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1 Introduction

The great recession has raised awareness of the role of monetary-fiscal policy interactions
in determining the behavior of economic aggregates. In the United States, for example,
reductions in discount and funds rates and even unconventional quantitative easing measures
have accompanied fiscal stimulus policies. Moreover, given the high projected fiscal liabilities
in developed as well as in some developing countries, interactions are likely to figure more
prominently in determining economic outcomes over the coming decades.

The considerations behind monetary-fiscal policy interactions have been part of the mon-
etary and fiscal policymaking literature for a long time. Friedman (1948) proposed a scheme
of monetary-fiscal policy interactions to deliver stability in cyclical fluctuations. The seminal
work of Sargent and Wallace (1981) provides a formal investigation that illustrates how mon-
etary and fiscal policies interact to determine inflation. The authors show that under fiscal
dominance —where a partial monetization of government debt is necessary to avoid default—
the ability of the monetary authority to control inflation disappears. Leeper (1991) exam-
ined monetary-fiscal policy interactions within the dynamic stochastic general equilibrium
(DSGE) framework. The work of Canzoneri, Cumby and Diba (2010) surveys the positive
and normative aspects of monetary-fiscal policy interactions in the existing literature.

Conventionally, there have been two approaches to how each of the policy authorities
responds to deviations of its variables of interest from target. One approach specifies a central
bank that follows a Taylor (1993) rule under which the nominal interest rate increases more
than proportionally when inflation increases. Thus, monetary policy provides the nominal
anchor to deliver price-level determinacy. In this approach, the fiscal authority follows a
rule under which (lump-sum) taxes stabilize debt. This first approach has been referred to
as monetary dominance (see Carlstrom and Fuerst, 2000). We will call it a monetary (M)
regime.

The other approach postulates that the fiscal authority does not adjust taxes to stabilize
debt. In this case, the central bank cannot stabilize the price level. Thus, fiscal policy
provides the nominal anchor for price-level determinacy through expectations about future
surpluses, given a level of outstanding nominal liabilities (see Leeper, 1991; Sims, 1994;
Woodford, 1994, 1995, 1996; Cochrane, 1998, 2005, 2001). This approach has been referred
to as the fiscal theory of the price level. We will call it a fiscal (F) regime.

When the two approaches are considered together, there are four possible combinations
of monetary and fiscal policy stances that have been referred to as monetary-fiscal policy
interactions. The four combinations are: (i) an M regime; (ii) an F regime; (iii) a regime
where no authority provides the nominal anchor and the price level is indeterminate; (iv) a
regime where both authorities try to provide the nominal anchor and debt is unbounded.

This paper formulates and solves a New Keynesian model that incorporates monetary
and fiscal policy rules whose coefficients are time-varying and interdependent. Time vari-
ation and interdependence allow for co-movements in monetary and fiscal policymaking,
thereby introducing a direct channel of interactions. This channel influences expectations
about future monetary and fiscal policymaking, affecting the dynamics of the variables in
equilibrium. In particular, we show that when there are co-movements in monetary and
fiscal policymaking in the direction of stable and determinate equilibria —the M and F
regimes— the volatilities of output and inflation are reduced, compared to the case where
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co-movements in that direction are absent.
As Davig and Leeper (2007) emphasize, policymaking is a complicated process of ana-

lyzing and interpreting data, receiving advice, and applying judgment. During some periods
policymakers may give more attention to inflation or debt stabilization, while in other periods
they may give more attention to output stabilization. Furthermore, a substantial empirical
literature argues that policy rules have not remained invariant over the past six decades (see
Clarida, Gali and Gertler, 2000; Favero and Monacelli, 2003; Lubik and Schorfheide, 2004;
Davig and Leeper, 2006; Fernandez-Villaverde, Guerron and Rubio-Ramirez, 2010; Bianchi,
2012). In this paper, policy rule coefficients move across regimes as functions of exogenous
latent factors. In particular, the policy rule coefficients are logistic functions of these latent
factors. The logistic function allows the policy rule coefficients to move between two regimes
—as with a two-state Markov-switching specification— with a smooth transition between
regimes. We assume that one latent factor influences the evolution of the coefficients of
the monetary policy rule and that a different latent factor influences the evolution of the
coefficients of the fiscal policy rule.

We introduce interdependence between monetary and fiscal policy by allowing correlation
between the two latent factors driving the evolution of the monetary and the fiscal policy
rule coefficients. This correlation can be seen as coordination —explicit or implicit— in
policymaking. The correlation between the latent factors allows policy interactions through
co-movements in the evolution of the policy rule coefficients.

Given the logistic specification of the policy rule coefficients and the existence of la-
tent factors as additional states, the model is intrinsically nonlinear. We devise a solution
method that takes into consideration these nonlinearities. The solution method incorporates
agents’ expectations on the joint evolution of the policy rule coefficients. This makes the
model appropriate to analyze the impacts of monetary and fiscal policies in a framework of
interactions.

We employ a limited-information analysis to estimate the policy rule coefficients using
Bayesian methods appropriate for nonlinear state-state models. The results indicate that
the policy rule coefficients are far from constant. In particular, the monetary policy rule
coefficient on inflation switches more frequently than the fiscal policy rule coefficient on
debt. There is also a degree of policy interdependence: fiscal policy that focuses on keeping
debt under control tends to accompany monetary policy that focuses on keeping inflation
under control, and monetary policy that does not increase interest rates actively tends to
accompany fiscal policy that does not pay attention to debt increases.

Finally, we calibrate the model to carry out policy analysis. The policy experiments
show that contractionary monetary policy can lower inflation, at least in the short-run. The
experiments also show that (lump-sum) taxes have effects on output and inflation, as the
literature on the fiscal theory of the price level suggests, but the effects are attenuated with
respect to a pure fiscal regime.

2 Interactions Between Monetary and Fiscal Policy

In this section, we introduce the concept of interdependence in policymaking that will be
central to the analysis of the subsequent sections. We describe the theoretical framework of
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monetary-fiscal policy interactions and the empirical findings in the literature with respect
to policy interactions. Then, we present how we implement interdependence in policymaking
through interdependence of the policy rule coefficients.

The theoretical framework of monetary-fiscal policy interactions in a DSGE model was
first introduced by Leeper (1991), who shows how different combinations of the magnitudes of
monetary and fiscal policy rule coefficients lead to different equilibrium outcomes and local
dynamics. Leeper coins the terms “active” and “passive” monetary and fiscal policies to
describe how the central bank adjusts interest rates with respect to inflation deviations from
target, and how fiscal policy adjusts taxes to changes in public debt. A change more than
proportional in nominal interest rates with respect to inflation deviations from target is called
“active” monetary policy, while a Ricardian view of fiscal policy, where taxes adjust enough
to cover interest payments and to retire debt, is called “passive” fiscal policy. The alternative
scenarios with respect to monetary and fiscal policies are called “passive” monetary policy
and “active” fiscal policy.1 Leeper finds that the model delivers a bounded unique rational
expectations equilibrium as long as monetary policy is active and fiscal policy is passive
—regime M— or if monetary policy is passive and fiscal policy is active —regime F. Also,
the model delivers indeterminacy if both monetary policy and fiscal policy are passive, and
no bounded solution if both are active. Other papers along this line are Sims (1994) and
Leith and Wren-Lewis (2000).

Davig and Leeper (2006) estimate Markov-switching models of monetary and fiscal policy
rules with U.S. data. Their results show that there have been numerous switches in monetary
and fiscal policy rule coefficients. In particular, whenever the interest rate rule pays more
(less) attention to inflation deviations, less (more) weight is given to output deviations. Also,
when the tax rule pays more (less) attention to debt deviations, more (less) weight is given to
output deviations —in line with an automatic stabilizers argument. These switches deliver
the four regimes of policy interactions described above.

Bianchi (2012) conducts a full-information estimation of a Markov-switching DSGE
model with policy rule coefficients that switch among three states. The results show that an
M regime was in place starting in the 1990s, that an F regime was in place during the 1970s
and that a no-bounded-solution regime was in place during the 1980s.

We explicitly introduce co-movements between the coefficients of the monetary and the
fiscal policy rules. This setup generalizes the Markov-switching setup in Davig and Leeper
(2006) and Bianchi (2012) by introducing interdependence in the evolution of the policy
rule coefficients. With this addition, the model allows for a direct channel of interactions
in policymaking, so that agents form expectations accordingly, not only in terms of the
individual future evolution of policy rule coefficients, but as a framework of joint future
policymaking. Below we specify the policy rules, the time variability characteristic of their
coefficients, and the way in which we introduce policymaking interdependence.

1Any positive response of taxes to debt constitutes a passive fiscal policy. If one only wants to consider
equilibria with bounded real debt, then real taxes have to respond to real debt deviations with increases
higher than the real interest rate.
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2.1 Policy Rules

We specify policy rules with coefficients that are time varying. The time-varying coeffi-
cients of a particular policy rule are logistic functions of a latent state. More specifically, if
ϱt is a time-varying coefficient of a policy rule, it has the following functional form:

ϱt ≡ ϱ(zt)

= ϱ0 +
ϱ1

1 + exp (−ϱ2(zt − ϱ3))
,

where zt = ρzzt−1 + ξt is a latent factor, 0 ≤ ρz ≤ 1 and ξt ∼ iidN(0, 1).
Under this specification, ϱ0 denotes the lower (upper) bound of ϱt, while ϱ0 + ϱ1 denotes

its upper (lower) bound (if ϱ1 < 0). ϱ2 > 0 is a transition coefficient affecting the speed
of the transition between the lower and the upper bounds, and ϱ3 is a location parameter
determining the value of zt at which ϱt crosses the y-axis. A graph for ϱ(zt) with ϱ0 = 0.01,
ϱ1 = 0.1, ϱ2 = 1, and ϱ3 = 0 is reproduced in Figure 1.

Figure 1: Logistic Function
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Two approaches have been proposed in the empirical literature to model time-varying
policy rule coefficients. One is a Markov-switching specification with finite number of states
(see Davig and Leeper, 2006; Eo, 2009; Davig and Doh, 2009; Bianchi, 2012). The second
is a random-coefficient specification (see Kim and Nelson, 2006a; Boivin, 2006; Fernandez-
Villaverde et al., 2010). Yksel et al. (2013) offers a survey of the literature on estimation of
Taylor rules with time-varying coefficients. An advantage of the Markov-switching specifica-
tion is that it implies bounded coefficients, which could be important in terms of determinacy
and relevance of the equilibrium. With respect to the random-coefficient specification, an
advantage is that it implies smooth transitions between states. The logistic specification
proposed in this paper generalizes the two approaches: On one hand it allows a policy rule
coefficient to switch smoothly from one regime to another, while on the other it allows for a
bounded evolution of the coefficient.2

The latent factors can be seen as representing a combination of political and institutional
determinants of policymaking. We assume that the latent factors are exogenous with respect
to the variables in the model, and that the information that they provide is part of the

2The Markov-switching specification is a particular case of the logistic specification, when ϱ2 → ∞.
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information set of the agents. That is, agents and policymakers share the same information
set. This assumption is needed to solve the model, as will be seen.

2.1.1 Monetary Policy Rule

Monetary policy takes place by means of an interest rate feedback rule of the form

Rt = RρR
t−1R̄

(1−ρR)
t exp (εRt ),

where ρR ∈ (0, 1) indicates the degree of interest rate smoothing, and εRt ∼ iidN(0, σ2
R) is a

monetary policy shock. R̄t is the target short-term nominal interest rate. The central bank
sets the interest rate to react to deviations of inflation from target and to the output gap
according to

R̄t = R

(
Πt

Π̄

)απ(zmt )(
Yt
Y ∗
t

)αy(zmt )

,

where Πt = Pt/Pt−1 is the gross inflation rate, Yt is output, Y
∗
t is output in the absence of

price rigidities, and R is the steady state nominal interest rate, which is guaranteed to be
state independent if the target inflation rate, Π̄, is set equal to Π, the steady state inflation.3

The time varying monetary policy rule coefficients are denoted by απ(zmt ) for inflation
deviations from steady state, and αy(zmt ) for the output gap. Both are logistic functions of
the monetary policy latent factor, zmt .

2.1.2 Fiscal Policy Rule

The fiscal rule is a feedback rule for the ratio of lump-sum taxes net of transfers to output,
τt = Tt/Yt, of the form

τt = τ ρτt−1τ̄
(1−ρτ )
t exp (ετt ),

where ρτ ∈ (0, 1) indicates the degree of tax rate smoothing, and ετt ∼ iidN(0, σ2
τ ) is a fiscal

policy shock. τ̄t is the target level of the ratio of taxes net of transfers to output. The fiscal
authority sets lump-sum taxes to respond to debt deviations and the output gap according
to

τ̄t = τ

(
bt−1

b̄

)γb(zft )
(
Yt
Y ∗
t

)γy(zft )

,

where bt = Bt/(PtYt) denotes the debt-to-output ratio in period t, and b̄ is its target level.
τ denotes the steady state level of τt, which is guaranteed to be state independent in the
steady state equilibrium if b̄ is set equal to its steady state value, denoted by b.

The time-varying fiscal policy rule coefficients are γb(zft ) for debt deviations from steady
state and γy(zft ) for the output gap. All are logistic functions of the fiscal policy latent
factor, zft .

3The target inflation rate is constant to allow the linearization of the model around the steady state
conditional on a realization of the latent factor at each period.
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2.2 Interdependence in Policymaking

To incorporate direct interactions between policies, we specify the latent factors driving
the evolution of the monetary and fiscal policy rule coefficients as follows:

zmt = ρzmz
m
t−1 + ξmt , (1)

zft = ρzf z
τ
t−1 + ξft , (2)

where ξmt and ξft are normally distributed with zero mean, unit variance and corr(ξmt , ξ
f
t ) = κ.

Notice that under this specification, if κ is different from zero, there exist explicit interactions
or interdependent changes between monetary and fiscal policymaking.

In this context, policy authorities react more or less strongly to deviations of their feed-
back variables from target —inflation and the output gap for the monetary authority, and
debt and the output gap for the fiscal authority— depending on the values of the policy
rule coefficients as driven by the evolution of the latent factors, zmt and zft . These latent
factors, ultimately, are going to determine the nature of the possible combinations between
monetary and fiscal policymaking. The full specification of the monetary and fiscal policy
rule coefficients is as follows:

απ(zmt ) = απ
0 +

απ
1

1 + exp(−απ
2 (z

m
t − απ

3 ))
, (3)

αy(zmt ) = αy
0 +

αy
1

1 + exp(−αy
2(z

m
t − αy

3))
, (4)

γb(zft ) = γb0 +
γb1

1 + exp(−γb2(z
f
t − γb3))

, (5)

γy(zft ) = γy0 +
γy1

1 + exp(−γy2 (z
f
t − γy3 ))

. (6)

A constant-coefficient version of this model delivers an M Regime when απ and γb are
sufficiently high —that is, when the monetary authority reacts strongly to inflation deviations
and the fiscal authority reacts strongly to debt deviations. The model delivers an F regime
when απ and γb are sufficiently low —that is, when the fiscal authority reacts weakly to debt
deviations and the monetary authority reacts weakly to inflation deviations. With time-
varying coefficients, we can choose values of the parameters defining each of the policy rule
coefficients (3)-(6) in a way that the model delivers determinate equilibria in the long-run
with short-run deviations from these equilibria.

The interactions with long-run determinacy of the equilibria are only well defined if κ ≥ 0.
In that case, at a given point in time, a high value of απ(zmt ) —given by a high value of zmt —
is likely to be associated with a high value of γb(zft ) —given by a high value of zft . Also, at
a given point in time, a low value of απ(zmt ) —given by a low value of zmt — is likely to be
associated with a low value of γb(zft ) —given by a low value of zft . Then, κ > 0 tends to
send the economy towards the M and F regimes. κ = 0 is the case present in the existing
literature, where interactions depend on the values of the policy rule coefficients.
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3 The Model

The economy is populated by a representative household, a final-goods-producing firm,
a continuum of intermediate-goods-producing firms, a monetary authority and a fiscal au-
thority. The model extends the setup in An and Schorfheide (2007) to incorporate a fiscal
policy rule and time-varying policy rule coefficients. Appendix A details the derivations.

3.1 Households

The representative household derives utility from consumption, Ct,
4 relative to a habit

stock, At, that is given by the level of technology of the economy, and real money balances,
Mt/Pt; and derives disutility from working hours, Ht. Hence, a representative household
chooses consumption, real balances, bond holdings and working hours to maximize

E0

∞∑
t=0

βt

(
(Ct/At)

1−σ

1− σ
+ χM log (Mt/Pt)− χH

H1+φ
t

1 + φ

)
,

where 0 < β < 1 is the discount factor, σ > 0 is the inverse of the elasticity of intertemporal
substitution, φ > 0 is the inverse of the Frisch elasticity of labor supply, and χM > 0 and
χH > 0 are constants that determine the steady state level of real money balances and hours
worked. The household saves in the form of nominal government bonds, Bt, that pay a gross
interest rate Rt each period, and by accumulating money balances that do not pay interests.
It supplies labor services to the firms taking the nominal wage, Wt, as given; it also receives
its aggregate share on the firms’ nominal profits, Dt, and pays lump-sum taxes, Tt. Thus,
the household’s budget constraint is expressed as

PtCt +Mt +Bt + PtTt ≤ HtWt +Dt +Mt−1 +Rt−1Bt−1 for t ≥ 0,

given the initial value of nominal assetsM−1+R−1B−1, and where the transversality condition
that rules out Ponzi schemes holds.

3.2 Firms

There are two types of producers: perfectly competitive final goods producers and a
continuum of monopolistic intermediate goods producers.

3.2.1 Final Goods Producers

Given the composite good price, Pt, and intermediate goods prices, Pt(j), for j ∈ [0, 1],
producers assemble the intermediate goods, Yt(j), to obtain a composite final good, Yt,

4Ct is a composite consumption good given by Ct =
(∫ 1

0
Ct(j)

θ−1
θ dj

) θ
θ−1

and θ ≥ 1. The household

chooses Ct(j) to minimize expenditure on the continuum of goods indexed by j ∈ [0, 1] which yields j’s

good demand as Ct(j) =
(

Pt(j)
Pt

)−θ

Ct, where Pt is the final good price at t and Pt(j) is the price of the

consumption good indexed by j.
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according to a CES technology, so that

Yt =

(∫ 1

0

Yt(j)
θt−1
θt dj

) θt
θt−1

, (7)

where θt ∈ [0, 1] is the (time varying) price elasticity of demand for each intermediate good.
Here θt represents a markup, or cost-push, shock in the Phillips curve relationship. This
cost-push shock follows the autoregresive process

log θt = (1− ρθ) log θ + ρθ log θt−1 + εθt ,

with ρθ ∈ (0, 1), θ > 1 and εθt ∼ iid N(0, σ2
θ).

Final good producers choose the demand of intermediate goods, Yt(j), to maximize profits
given by

PtYt −
∫ 1

0

Pt(j)Yt(j)dj.

Optimization yields the demand function of intermediate good j,

Yt(j) =

(
Pt(j)

Pt

)−θt

Yt. (8)

Combining (8) and (7) yields the expression of the final good price

Pt =

(∫ 1

0

Pt(j)
(1−θt)dj

) 1
1−θt

.

3.2.2 Intermediate Goods Producers

Intermediate goods firms produce type j good according to the linear technology

Yt(j) = AtLt(j), (9)

where Lt(j) are hours of work employed by the producer of intermediate good j, and At is
an exogenous technology shock identical across producers following the stochastic process

At = δAt−1 exp(νt),

where δ is a trend, and νt is a stochastic component following the process

νt = ρννt−1 + ενt ,

with ρν ∈ (0, 1) and ενt ∼ iid N(0, σ2
ν).

Intermediate good producers face an explicit cost of adjusting their price, measured in
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units of the finished good, and given by

ϕ

2

(
Pt(j)

ΠPt−1(j)
− 1

)2

Yt,

where ϕ ≥ 0 measures the magnitude of the price adjustment cost, and Π is the steady state
gross inflation rate associated with the final good.

Producers in the intermediate goods sector take wages as given and behave as monop-
olistic competitors in their goods market, choosing the price for their product taking the
demand in (8) as given. Hence, firm j chooses its labor input, Lt(j), and its price, Pt(j), to
maximize

E0

∞∑
t=0

MRS0,t

[
Pt(j)

Pt

Yt(j)−
Wt

Pt

Lt(j)−
ϕ

2

(
Pt(j)

ΠPt−1(j)
− 1

)2

Yt

]
, (10)

where MRS0,t is the household’s marginal rate of substitution between periods 0 and t,
which is given exogenously to the firm. Notice that firm j’s nominal labor cost is given by
WtYt(j)/At, and its real marginal labor cost is given by ψt = Wt/PtAt, which is the same
across firms in the intermediate goods sector.

3.3 Government

The government finances purchases of goods, Gt, with a combination of lump-sum taxes,
Tt, and money creation,Mt−Mt−1, so that the implied process for nominal debt, Bt, satisfies
the budget constraint:

Bt +Mt + PtTt = PtGt +Mt−1 +Rt−1Bt−1 for t ≥ 0, (11)

given M−1 +R−1B−1. Each period, the government demand of the final good is given by

Gt = ζtYt,

where ζt ∈ (0, 1) is an exogenous process defined by the transformation gt = 1/(1− ζt) with

ln gt = (1− ρg) ln g + ρg ln gt−1 + εgt ,

where ρg ∈ (0, 1), g = 1/(1− ζ) with ζ being the steady state ratio of government spending
to output, and εgt ∼ iid N(0, σ2

g).

3.4 Symmetric Equilibrium

In a symmetric equilibrium, all the intermediate-goods-producing firms make identical
decisions, the money supply equals money demand, labor supply equals labor demand, and
the net supply of government bonds is zero. Hence, the equilibrium conditions for t ≥ 0 are

9



given by

Yt = Ct +Gt +
ϕ

2

(
Πt

Π
− 1

)2

Yt, (12)

0 = 1− θt + θtψt − ϕ

(
Πt

Π
− 1

)
Πt

Π
+

+βϕEt

(
Ct/At

Ct+1/At+1

)σ
Yt+1/At+1

Yt/At

(
Πt+1

Π
− 1

)
Πt+1

Π
(13)

1 = βRtEt

(
Ct/At

Ct+1/At+1

)σ
At

At+1

1

Πt+1

, (14)

Wt

Pt

= χHL
φ
t At

(
Ct

At

)σ

, (15)

Mt

Pt

= χMAt

(
Ct

At

)σ (
Rt

Rt − 1

)
, (16)

with B−1, R−1 > 0, A−1 > 0 and M−1 > 0 given. The symmetric equilibrium is comple-
mented with the monetary and fiscal policy rules, and the exogenous processes for Gt, θt,
and At.

3.5 Frictionless Equilibrium

The frictionless equilibrium is given by the above equilibrium with no frictions (ϕ = 0).
Aggregate output in the frictionless equilibrium is given by

Y ∗
t = At

(
θt−1
θt

χH

)1/(σ+φ)

g
σ/(σ+φ)
t . (17)

The above is the potential output over which the output gap in the monetary and fiscal
policy rules is defined.

3.6 Steady-State Equilibrium

Since technology, At, is a non-stationary process, it introduces a stochastic trend in
output, consumption, real money balances, and the real wage. We define the stationary
variables as: yt = Yt/At, ct = Ct/At, wt = Wt/(AtPt) and vt = Yt/(Mt/Pt). The steady-state
equilibrium is the stationary equilibrium in the absence of shocks, and is defined by the
following equations:

Π =
Rβ

δ
, (18)

y =

(
θ−1
θ

χH

)1/(σ+φ)

gσ/(σ+φ) = y∗, (19)
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c =

(
θ−1
θ

χH

)1/(σ+φ)

gφ/(σ+φ), (20)

1

v
= χMy

(σ−1)g−σ

(
R

R− 1

)
, (21)

b =

(
β

β − 1

)(
1− 1

g
− τ − 1

v

(
1− 1

Π

1

δ

))
, (22)

where b is the steady state level of the debt-to-output ratio, Bt/(PtYt).

3.7 Log-linearized Model and Solution Method

Given that the coefficients of the policy rules are time varying, and the time variation
depends on the latent factors, the log-linearization is performed conditioning on the latent
factors being at their current values each period. That is the essence of the quasi-linearity
of the model. We present the model in log-deviations from the non-stochastic steady state,
and show a way to solve it using a method in line with the minimum state variable (MSV)
solution approach (McCallum, 1983).

Conditioning on a value of the latent factors at period t, zmt and zft , the log-linearized
equations characterizing the economy in equilibrium are (x̂t = ln(xt/x) denotes the log-
deviation of variable xt relative to its non-stochastic steady state, x):

ŷt = Etŷt+1 −
1

σ
(R̂t − EtΠ̂t+1) + (1− ρg)ĝt +

ρν
σ
ν̂t (23)

Π̂t = βEtΠ̂t+1 +
(θ − 1)(φ+ σ)

ϕ
(ŷt − ŷ∗t ) (24)

v̂t = (1− σ)ŷt + σĝt +

(
1

R− 1

)
R̂t (25)

b̂t =
1

bg
ĝt −

τ

b
τ̂t +

1

bv
v̂t −

1

bvΠδ
v̂t−1 −

(
1

bvΠδ
+

1

β

)
(Π̂t +∆Ŷt) +

1

β
(R̂t−1 + b̂t−1) (26)

ŷ∗t =
1

(φ+ σ)(θ − 1)
θ̂t +

σ

φ+ σ
ĝt (27)

R̂t = ρRR̂t−1 + (1− ρR)
(
απ(zmt )Π̂t + αy(zmt ) (ŷt − ŷ∗t )

)
+ εRt (28)

τ̂t = ρτ τ̂t−1 + (1− ρτ )
(
γb(zft )b̂t−1 + γy(zft ) (ŷt − ŷ∗t )

)
+ ετt , (29)

where ∆Ŷt = ŷt − ŷt−1 + ν̂t. The exogenous shocks that complete the equilibrium are the
government spending shock, the cost-push shock, and the technology shock, given by

ĝt = ρgĝt−1 + εgt (30)

θ̂t = ρθθ̂t−1 + εθt (31)

ν̂t = ρν ν̂t−1 + ενt . (32)

To solve the model, let ωt = [ŷt, π̂t]
′, kt = [v̂t, b̂t, R̂t, τ̂t,∆Ŷt, yt−1, ŷ

∗
t ]

′, ut = [ĝt, θ̂t, ν̂t, ε
R
t , ε

τ
t ]

′,
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εt = [εgt , ε
θ
t , ε

ν
t , ε

R
t , ε

τ
t ]

′, zt = [zmt , z
f
t ]

′ and rewrite (23)-(32) as

0 = A(zt)kt +B(zft )kt−1 +C(zt)ωt +Dut (33)

0 = Gkt + JEtωt+1 +Kωt +Mut (34)

ut+1 = Nut + εt+1, (35)

where A,B(zft ),C(zt),D,G,J,K,M and N are appropriate coefficient matrices shown in
Appendix B.

The proposed solution is given by

kt = P(zt)kt−1 +Q(zt)ut, (36)

ωt = R(zt)kt−1 + S(zt)ut, (37)

where, for F(zt) = {P(zt),Q(zt),R(zt),S(zt)}, the i, j − th entry is given by

F (zt) = F0 + F1

1
1+exp (−F2m(zmt −F3m))

1

1+exp (−F2f(zft −F3f))

1− F4
exp (−F2m(zmt −F3m))

1+exp (−F2m(zmt −F3m))

exp (−F2f(zft −F3f))
1+exp (−F2f(zft −F3f))

, (38)

with F4 ∈ [0, 1]. This functional form is known as a bivariate logistic function and was
introduced by Ali et al. (1978).5 The parameter F4 allows the model to capture the effect
that the dependence between latent factors has on the expectations formations of the agents
about the future evolution of the coefficients of the solution. Appendix C illustrates the
procedure to obtain the parameters of the bivariate logistic functions based on the coefficients
of the structural model.

We solve the model using an undetermined coefficients method approach where not only
the solution has to be guessed and verified, but also the functional form of the coefficients of
the solution. Within the logistic specification of policy rules, the bivariate logistic function
(38) satisfies this last requirement. Appendix E shows that the coefficients of the solution
indeed follow a bivariate logistic function.

3.8 On Existence, Stability and Uniqueness of the Solution

Existence of the solution is guaranteed by using the undetermined coefficients method.
Time-varying coefficients pose a difficulty at guaranteeing stability and/or uniqueness of the
solution, in particular if one thinks of stability and/or uniqueness holding in each period
of time. The method presented finds a solution that is based on the values of the time-
varying policy rule coefficients at their limits, or long-run bounds. These limiting coefficient
values are chosen to deliver stability and uniqueness of the solution in a constant-coefficient
version of the model, offering well-defined bounds between which the economy evolves and
between which agents form expectations. Davig and Leeper (2007) and Farmer et al. (2008)
emphasize that stability and uniqueness of Markov-switching rational expectations models

5For identification of the latent factors and the coefficients of the policy rules in a estimation setting it
is necessary to impose that F2m > 0 and F2f > 0.
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have to be discussed within a framework of how agents form expectations about the future
evolution of policy rule coefficients, and that is the approach taken at deriving the solution
of the model in this paper. Here, we take expectations to the realization of future policy
rule coefficients as given by realization of logistic functions of the latent factors.6

4 Estimation Strategy

This section presents the estimation of the policy rules with time-varying coefficients
driven by latent factors as specified for the New Keynesian model presented in Section 3.
The estimation employs a limited-information estimation approach using Bayesian methods,
which allows obtaining the set of parameters characterizing the policy rules, denoted by Θy,
the set of parameters of the latent factors, denoted by Θz, and the latent factors themselves.

4.1 Time-varying Coefficients, Stochastic Volatility and Endogene-
ity

Let INTt denote the demeaned nominal federal funds rate in period t, TAXt the demeaned
ratio of federal receipts net of transfers to output in period t, INFt the demeaned annual
inflation rate in period t, GAPt the output gap in period t and DBTt the demeaned average
debt to output ratio over the last four quarters. The state-space model is composed of the
observation equations

INTt = ρRINTt−1 + (1− ρR) (α
π(zmt )INFt + αy(zmt )GAPt) + υRt (39)

TAXt = ρτTAXt−1 + (1− ρτ )
(
γb(zft )DBTt + γy(zft )GAPt

)
+ υτt , (40)

and the transition equations

zmt = ρzmz
m
t−1 + ξmt (41)

zft = ρzf z
τ
t−1 + ξft . (42)

Assumptions about the distributions of υRt and υτt are made explicit in the following section.

4.1.1 Stochastic Volatility

The existence of stochastic volatility in the shocks of policy rules with time-varying
coefficients has been documented by Davig and Leeper (2006), Fernandez-Villaverde et al.
(2010), Bianchi (2012) and Fernandez-Villaverde et al. (2011b), who find that not only
switches in policy rule coefficients are detectable in estimation, but also a fair amount of

6The debate on the determinacy of the solution of DSGE models with time-varying coefficients has
attracted attention of the literatures in recent years, and it is still an open field to future research (see Davig
and Leeper, 2006, 2007; Fernandez-Villaverde et al., 2010; Farmer et al., 2011; Cho, 2013; Foerster et al.,
2013).
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stochastic volatility.7 Hence, the distribution of the error terms in the policy rules is specified
as υRt ∼ N(0, σ2

R,t) and υ
τ
t ∼ N(0, σ2

τ,t), where

lnσR,t = (1− ρσR
) ln σR + ρσR

lnσR,t−1 + ηRξ
R
t (43)

lnστ,t = (1− ρστ ) ln στ + ρστ lnστ,t−1 + ητξ
τ
t (44)

with ρσR
∈ [0, 1), ρστ ∈ [0, 1), ξRt ∼ iidN(0, 1) and ξτt ∼ iidN(0, 1).

In what follows, let ht = [ln σR,t, lnστ,t] and let the set of parameters of the stochastic
volatility processes be denoted Θh.

Equations (43) and (44) are added to the state-space model (39)-(42) to introduce
stochastic volatility to the specification of the policy rules with time-varying coefficients.

4.1.2 Endogeneity

Since the work of Clarida et al. (2000), the estimation of monetary policy rules with
constant coefficients, in particular the Taylor rule, has taken into account the endogeneity
that exists between the shocks of the policy rule and inflation and output. The instrument
set used in their GMM estimation contains four lags of: inflation, the output gap, the Federal
funds rate, the short-long spread, and commodity price inflation.

With respect to fiscal policy rules with constant coefficients, Li (2009) illustrates the
endogeneity/simultaneity problem that arises when estimating a fiscal policy rule like the
one presented in this work. In estimating a fiscal policy rule that reacts to contemporary
debt and the output gap, Claeys (2008) uses a set of instrumental variables in his GMM
estimation that contains lags of: the output gap, debt, unit labor costs, growth in labor
productivity, NAIRU, a broad money aggregate, a synthetic interest rate of the EURO area,
oil price index, and the SEK/DEM exchange rate.

In terms of estimating linear equations with time-varying coefficients, either in the con-
ventional random-coefficient or Markov-switching setups, Kim (2006) and Kim (2009) es-
tablish a Heckman-type two-stage maximum likelihood estimation technique to deal with
the endogeneity problem to yield consistent estimates of the hyper-parameters, as well as to
provide correct inferences on the time-varying coefficients. Kim and Nelson (2006b) estimate
a random coefficients monetary policy rule for the United States using as the set of instru-
ments four lags of: the Federal funds rate, output gap, inflation, commodity price inflation,
and M2 growth. In related work, Bae et al. (2011) estimate a Markov-switching coefficients
monetary policy rule for the United States using as the set of instruments three lags of: the
Federal funds rate, GDP gap, inflation, commodity price changes, and the spread between
the long-term bond rate and the three-month Treasury Bill rate.

The set of instruments that we use for both the monetary and the fiscal policy rules is
given by four lags of: inflation, the output gap, government spending as proportion of GDP,
M2 growth, and commodity price inflation. In a constant-coefficient version of the policy
rules, the GMM estimation obtains the following results with respect to the instrument set:
(i) the J test statistics of overidentification restrictions for both of the rules do not reject the
null hypothesis that the instrument set is appropriate at the 5% level of significance; (ii) the

7Sims and Zha (2006), on the other hand, argue that only changes in volatility can be detected in
estimation, and not changes in coefficients.
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exogeneity C test statistics imply that different subsets of instruments are exogenous at the
5% level of significance; (iii) the Cragg-Donald test statistics reject the null hypothesis of
weak instruments at the 5% level of significance for both policy rules. Appendix F describes
the setup of the model to correct for endogeneity. Details on the implementation of the
Bayesian estimation of Θy, Θz, Θh, {zs}Ts=0 and {hs}Ts=0 appear in Appendix H.

4.2 Data

We use quarterly data from 1960:1 to 2008:3. The sample is not extended beyond 2008:3
to avoid having to deal with the zero lower bound (ZLB) of interest rates. It is still possible
to estimate the interdependence between monetary and fiscal policy under the ZLB, but that
constitutes a subject of future research. Inflation is the percentage change over the last four
quarters of the price level given by the GDP price deflator. The nominal interest rate is the
quarterly average of the federal funds rate. The output gap is the log difference between real
GDP and the Congressional Budget Office’s measure of potential real GDP. M2 growth is the
percentage change over the last four quarters of seasonally adjusted M2. Commodity price
inflation is the percentage change over the last four quarters of the commodity price index.
Government spending is the federal consumption expenditures and gross investment. These
variables are obtained from FRED. Lagged debt is the average debt-output ratio over the
previous four quarters, where debt is the TreasuryDirect par value of gross marketable federal
debt held by the public. Tax net of transfers corresponds to the seasonally adjusted quarterly
current receipts of the federal government from which the current transfer payments have
been deducted. This variable is obtained from the NIPA Table 3.2.

5 Estimation Results

The choice of prior distributions, hyper parameters, means of 5, 000 draws from the
posterior distribution after trimming the first 1, 000, 000 out of 2, 000, 000 draws and thinning
every 200th draw, along with 90% confidence sets appear in Table 1.8 In order to keep
the estimation relatively simple, we impose two restrictions that do not change the results
qualitatively: First, we assume that the output gap coefficients of both policy rules are not
time varying, which allows us to focus on capturing the interdependence between monetary
and fiscal policy making in terms of the co-movement of the Taylor rule coefficient of inflation
and the tax rule coefficient of lagged debt. Second, we assume that the location parameters
of the logistic policy rule coefficients, απ

3 and γb3, are zero.
Figure 2 shows that the estimated model does acceptably well at explaining the observed

time series of interest and tax rates.

8The Raftery and Lewis (1992) diagnostic test determines that 606,826 draws from the posterior dis-
tribution should be taken to estimate the 50th percentile within 0.01 with a 95% confidence level. It also
determines that thinning to achieve an independent chain should occur every 115th draw.
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Table 1: Results from the Bayesian Estimation

Prior Posterior
Parameters Density Mean SD Mean 90% Conf. Set

απ
0 Gamma 0.8 0.2 0.57 [0.35, 0.84]
απ
1 Gamma 1.2 0.3 1.06 [0.61, 1.68]
απ
2 Gamma 10 8 5.05 [0.10, 15.72]
αy Gamma 0.5 0.4 0.25 [0.08, 0.52]
ρR Beta 0.9 0.05 0.96 [0.91, 0.99]
γb0 Normal -0.02 0.05 0.00 [-0.06, 0.06]
γb1 Gamma 0.1 0.05 0.09 [0.03, 0.20]
γb2 Gamma 10 8 4.03 [0.04, 14.70]
γy Gamma 0.5 0.4 0.76 [0.44, 1.16]
ρτ Beta 0.9 0.05 0.94 [0.93, 0.96]
ρzm Beta 0.9 0.05 0.86 [0.74, 0.95]
ρzf Beta 0.9 0.05 0.88 [0.78, 0.95]
zm0 Normal 0 2 -0.41 [-2.66, 1.93]

zf0 Normal 0 2 0.05 [-2.26, 2.35]
κ — 0.20 [0.02, 0.47]

lnσR — -2.05 [-2.41, -1.70]
ρσR

— 0.77 [0.63, 0.90]
ηR — 0.57 [0.39, 0.78]

lnσR,0 — -2.93 [-5.18, -0.68]
lnστ — -1.15 [-1.45, -0.89]
ρστ — 0.48 [0.27, 0.64]
ητ — 0.88 [0.65, 1.11]

lnστ,0 — -5.85 [-12.48, 0.59]
— denotes a flat prior.
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Figure 2: Observed and Predicted Series
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5.1 Choice of Prior Distributions

With respect to the monetary policy rule coefficients, there exist results in the literature
about the values that they take in different regimes. Clarida et al. (2000) estimate that
the inflation coefficient is 0.83 in the pre-Volcker era and 2.15 in the Volcker-Greenspan
era. Lubik and Schorfheide (2004) find that the coefficient on inflation is estimated at 0.77
or 0.89, depending on the prior used, in the pre-1982 era, and 2.19 in the post-1982 era.
Bianchi (2012) finds that the coefficient on inflation is estimated to be 0.94, 1.25, or 1.6
in a three-regime Markov-switching specification. Davig and Leeper (2011) find that the
inflation coefficient switches between 0.53 and 1.29. We specify the prior distribution that
characterizes the lower bound of the inflation coefficient with a mean of 0.8, and the upper
bound with a prior distribution whose mean is 2 (the sum of 0.8 and 1.2 in Table 1). In
regard to the fiscal policy rule coefficients, Bianchi (2012) finds that the coefficient on debt
is estimated to be 0.0006, -0.0007, or -0.0036. Davig and Leeper (2011) estimate that the
coefficient on debt switches between -0.025 and 0.071. We set the prior mean of the lower
bound of the debt coefficient to -0.02, and the mean of the prior distribution that sets the
upper bound of the coefficient to 0.08 (the sum of -0.02 and 0.1 in Table 1). The policy rule
coefficients on the output gap for both policy rules have 0.5 as the prior mean.

The prior distribution specification of the transition coefficients of both logistic policy
rule coefficients is set to have a mean of 10 with a standard deviation of 8. We recall that
the larger the coefficient is, the more rapid the transition between states is. Values of the
coefficient greater than 10 imply a specification that mimics closely a Markov-switching-like
transition. The choice of this prior distribution allows the coefficient to take low or high
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values.
The smoothing coefficients of the policy rules have prior distributions that are standard

in terms of the persistence that they represent for interest and tax rates in the data.
A coefficient that deserves attention is the correlation coefficient between the shocks of the

latent factors, which determines the degree of interdependence between monetary and fiscal
policymaking. The prior distribution chosen is uniform on [0,1]. We recall that a positive
value of this parameter implies that monetary and fiscal policy co-move in such a way that
they tend to deliver outcomes in the M or the F regime more frequently than outcomes
in the indeterminacy or no solution regimes. Hence, by choosing a prior distribution on
the nonnegative domain, we are imposing a model with either co-movements towards the
determinate regimes or absence of co-movements in that direction, but we are not allowing
co-movements in the direction of the indeterminate or unbounded debt regimes.

Finally, following Fernandez-Villaverde et al. (2011a), we do not specify prior distribu-
tions for the parameters of the stochastic volatility processes.

5.2 Parameter Estimates

The estimated parameters of the monetary and fiscal policy rule coefficients in Table
1 have the expected magnitudes and signs. In particular, for the monetary policy rule,
the inflation coefficient takes values in (0.57, 1.63), while the output gap coefficient has a
posterior mean of 0.25. With respect to the fiscal policy rule, the debt coefficient takes on
values in (0.001, 0.095), while the output gap coefficient has a posterior mean of 0.76. The
speed of transition of the policy rule coefficients is estimated to be higher for the inflation
coefficient of the monetary policy rule than for the debt coefficient of the tax rule. This
implies that the fiscal authority has a slower transition across states (in terms of how taxes
react with respect to deviations of debt) than the monetary authority does (in terms of how
the interest rate reacts with respect to inflation). This result is consistent with the legislative
and implementation lags of fiscal policymaking.

The latent factors show relatively high persistence, with the fiscal policy latent factor
being somewhat more persistent than the monetary policy one. This result implies that
fiscal policy regimes are likely to last longer than monetary policy regimes.

Finally, the correlation between the latent factors has an estimated posterior mean of 0.20
and a 90% confidence set given by (0.01, 0.47). This result implies that there is a degree of
direct interactions between policies. In particular, monetary tightenings to stabilize inflation
tend to be accompanied by fiscal policy that stabilizes debt (M regime), while fiscal policy
that departs from debt stabilization tends to be accompanied by interest rates that react
weakly to inflation (F regime).

5.3 Evolution of Policy Rule Coefficients

Figure 3 shows the smoothed estimates of the monetary policy rule coefficient for inflation
on the left axis, and of the fiscal policy rule coefficient for debt on the right axis. Two facts
are apparent from this figure: First, the fiscal policy rule coefficient on debt was low during
most of the 1970s, the second half of the 1980s, and the first half of the 1990s. Second, the
monetary policy rule coefficient on inflation was high during the second half of the 1960s

18



Figure 3: Evolution of Policy Rule Coefficients and NBER Recession Periods
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and the first half of the 1970s, during the first half of the 1980s, and during the first half
of the 2000s. In the next paragraphs, we discuss the evolution of each of the policy rule
coefficients to compare the econometric results with the narrative about monetary and fiscal
policymaking and with similar results in the literature.

The evolution of the monetary policy rule coefficient on inflation reveals that the Federal
Reserve conducted a hawkish monetary policy during the second half of 1960s, as Davig and
Leeper (2011), Bianchi (2010), Eo (2009) and Fernandez-Villaverde et al. (2010) find, with
a tendency to ease it towards the end of the decade. During the mid 1970s the interest rate
did not react strongly to inflation. Most studies in the literature find a passive monetary
policy during this decade, except Boivin (2006), who finds that monetary policy was tight
during the first half of the 1970s. At the end of the 1970s monetary policy switched rapidly
to a hawkish regime. This switch in policymaking is also found by Davig and Doh (2009), Eo
(2009) and Bianchi (2010) who find, based on estimations of Markov-switching policy rule
coefficients, that the active monetary policy periods started around, or a little earlier than,
the mid 1980s. The graph shows that monetary policy continued to be relatively hawkish
during most of the 1980s. Starting in the late 1980s, the estimates of the model suggest
a relatively weak response to inflation, which lasted through much of the 1990s. A study
that finds a similar result is Fernandez-Villaverde et al. (2010).9 In 2000s, monetary policy
increased its reaction to inflation until 2005 and then the strength of the reaction declined.
The empirical evidence is divided with respect to this result: On one hand Eo (2009), Davig
and Doh (2009) and Bianchi (2010) find that monetary policy was actively fighting inflation,
while on another Fernandez-Villaverde et al. (2010) and Davig and Leeper (2011) find the

9Kim and Nelson (2006a) find that their confidence interval starts including the passive monetary policy
region at the beginning of the 1990s.
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opposite.
For a narrative perspective on the results, we rely on the history of the monetary policy

of the Federal Reserve as told by Hetzel (2008). He compares Fed Chairman William Martin
to Fed Chairman Paul Volcker and Fed Chairman Alan Greenspan in that Martin believed
that raising short-term interest rates in an expansion was a way to preempt inflation. That
allows to understand the behavior of monetary policy, according to the graph, during the
second half of the 1960s. Hetzel also mentions the weak reaction of interest rates to inflation
during the 1970s due to the focus of the central bank to promote employment and the belief
that inflation was a nonmonetary phenomenon. According to Hetzel, the 1980s saw the
commitment of the Federal Reserve to money targets allowing the FOMC to raise interest
rates by whatever extent necessary to lower inflation. The results show that the reaction
coefficient of the interest rate to inflation was indeed relatively high.

After tightening monetary policy at the end of the 1980s to counteract concerns about
inflation, the results show a decline in the reaction of the federal funds rate to inflation
at the beginning of the 1990s to help with the recovery after the recession. With inflation
declining during this decade and interest rates remaining nearly flat, except for the rise
between 1993 and 1995 due to the “1994 inflation scare” (see Hetzel, 2008), the reaction
coefficient on inflation declines until the events of the Asian and Russian crises. During
1998 the Federal Reserve moved the interest rate in the same direction as declining inflation,
causing a spike in the evolution of the inflation coefficient. In the 2000s, with declining
inflation and interest rates between 2001 and the beginning of 2003, the reaction coefficient
to inflation rises rapidly to reach a peak in the second quarter of 2003 when concerns about
interest rates being close to the zero-bound arose for the first time. With inflation stable
and interest rates rising during 2004, the reaction coefficient declines. Then the coefficient
rises at the end of the sample, between 2005 and 2008, reflecting interest rates that risen
more than what inflation risen during the period.

For the debt policy rule coefficient, the results show a coefficient responding weakly to
lagged debt during the 1970s, a result mostly in the same lines as those in Davig and Leeper
(2006), Bianchi (2012), and Favero and Monacelli (2003). The results also show a low debt
coefficient during the second half of the 1980s and the first half of the 1990s, a result that is
compatible with the findings in Bianchi (2012).

In terms of the narrative, the tax reductions in the revenue act of 1964 can help un-
derstand the decline of the coefficient during the 1960s, while the revenue and expenditure
control act of 1968 and the tax reform act of 1969 can help explain the rise of the coefficient
at the end of the decade. The subsequent tax reforms of 1971, 1975 and 1976 help explain
the decline in the debt coefficient during the 1970s. The rise of the coefficient observed at
the end of the decade has to do with the fact that the debt-GDP ratio rises between 1975
and 1980, inclusive, and the net revenue-GDP ratio rose in that period. That relationship
breaks up during the 1980s due to the tax reforms of the decade, in particular the recovery
tax act of 1981. During the 1990s, the coefficient rises rapidly, most likely due to the changes
implemented in the budget reconciliation act of 1993. The taxpayer relief act of 1997 can
help understand the decline in the coefficient at the end of the decade. The decline of the
debt coefficient in the 2000s can be attributed to the tax relief acts of 2001 and 2003, and
the subsequent stimulus acts of 2004 and 2008.

In a historical perspective, the evolution of the estimated policy rule coefficients suggest
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Figure 4: Evolution of Estimated Stochastic Volatilities
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that policy leaned towards a fiscal regime during some part of the 1970s, a result emphasized
by Bianchi (2012). On the other hand, the estimates favored a monetary regime during the
second half of the 1960s, the first half of the 1980s, and the first half of the 2000s. The macroe-
conomic model allows short-run dynamics that visit temporarily all the regimes, including
the indeterminate and the no-bounded-solution regimes, but the long-run expectations of a
mixed regime imply dynamics that tend to move the economy between the two determinate
regimes.

5.4 Evolution of Estimated Stochastic Volatilities

Figure 4 shows the evolution of the estimated stochastic volatilities for the interest and
tax rate rules. The estimation shows that the volatility of interest rates was significantly
higher during the beginning of the 1980s due to the important change in conducting monetary
policy. Also, volatility is somewhat lower starting in the 1990s, a phenomenon referred to
as the great moderation (see Stock and Watson, 2002), and stays low with a small peak at
the end of the sample period when the great recession hit. On the other hand, fiscal policy
volatility shows spikes in the mid 1970s, the first half of the 2000s, and the beginning of the
great recession. All these events are associated with some kind of fiscal stimulus. It is worth
noting that the persistence of the volatility of monetary policymaking, given by the estimated
coefficient ρσR

, is higher than the persistence of the volatility of fiscal policymaking, given
by the estimated coefficient ρστ , as can be seen in Table 1.

6 Monetary and Fiscal Policy Analysis

This section presents the results of monetary and fiscal policy experiments through
impulse-response functions. The section also presents the effect of policy interdependence in
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reducing the volatility of output and inflation.

6.1 Nonlinear Impulse Response Analysis

We perform policy experiments with the model solved using the proposed solution method
and calibrated according to the estimated parameters of the policy rule coefficients. Since the
estimation is not constrained to deliver a continuous solution to the macroeconomic model
as presented in Appendix E, we calibrate the model with coefficients that are consistent with
continuity of the solution. In particular, we calibrate the lower bound of the monetary policy
rule coefficient on inflation, απ

0 , to be 0.85 instead of 0.57. The fiscal policy rule coefficients,
γb0 and γb0, are calibrated to 0.03 and 0.07 instead of 0 and 0.09, respectively.

For the markup in steady state and the price adjustment cost parameter, Keen and Wang
(2007) show that, given a steady state markup and a fraction of firms that re-optimize each
period, there is a corresponding value for the price adjustment cost parameter. We set
the markup to 20% and the fraction of re-optimizing firms to 25% each period (a firm re-
optimizes every 12 months). These values correspond, approximately, to θ = 6 and ϕ = 60.
Other parameters that need to be specified are: δ, the steady state gross quarterly rate of
output growth, which is set to 1.0081, the average over the sample period that implies a
steady state annual growth rate of approximately 3.25%; Π, the steady state gross quarterly
rate of price inflation, which is set to 1.0084, the average over the sample period that implies
a steady state annual inflation of approximately 3.4%; b, the steady state level of debt to
output, which is set to 0.3354, the average over the sample period; ζ, the ratio of government
spending to output is set to 0.081, also the average over the sample period; 1/vb, the ratio
of outstanding money balances to debt, is set to 0.2 following Kim (2003); β is set to 0.99;
σ is set to 1; and φ is set to 1, so that the Frisch elasticity of labor supply is unity.

We perform two policy experiments. First, a one-time i.i.d shock on the interest rate.
Second, a one-time i.i.d shock on the tax-to-output ratio. The responses to these shocks are
calculated under three scenarios: starting at regime M and staying there forever, starting at
regime F and staying there forever, and a Mixed regime.

In the Mixed regime, the latent factors start at their means, which we set to zero according
to the confidence sets in Table 1. These zero values imply corresponding values for the initial
monetary and fiscal policy rule coefficients (απ(0) = 1.38 and γb(0) = 0.065). Over the
response horizon, the policy rule coefficients evolve according to their logistic specifications
and the joint evolution of the latent factors. To compute the responses in the Mixed regime,
we take the average of the responses for given realizations of the policy rule coefficients.
Note that in the Mixed regime the initial values of the policy rule coefficients imply that the
economy is in regime M. However, because agents expect regime F to take place for some
time in the future, the dynamics of the Mixed regime are not those of a pure M regime, but
of a regime that incorporates the features of both regimes M and F.

6.1.1 A Monetary Contraction

Figure 5 shows the responses of some of the variables of the model to a one-time 25 basis
point i.i.d. shock on the interest rate.
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Figure 5: Response to a 25 bp Increase in the Interest Rate
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Figure 6: Response to a 100 bp Increase in the Tax Rate
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The effects of a monetary contraction in a New Keynesian model in regime M are well
known: an open market operation that sells debt to households, and that is expected to
be corrected in the future via higher taxes, does not change household wealth and only in-
creases the nominal interest rate. With sticky prices the real interest rate increases, reducing
consumption, output and inflation. As the nominal interest rate decreases, as well as the
real interest rate, the output gap returns to zero and inflation to its steady state. Taxes
first decrease due to feedback from the output gap and then increase due to their Ricardian
response to lagged debt, which is now higher. Given the persistence of taxes, the present
value of expected future surpluses increases and slowly returns to steady state, while the
present value of expected future seignorage decreases on impact.

In regime F, an open market operation that sells debt to households, which is not expected
to be corrected in the future via higher taxes, increases household’s wealth. The increase in
wealth attenuates the liquidity-induced contraction in demand. Inflation drops on impact
given that the liquidity effect dominates the wealth effect.10 The real interest rate increases
on impact, causing output to fall. Note that a “price puzzle”, in the sense of Sims (1992), is
present. Over the response horizon, inflation increases due to some unpleasant monetarist
arithmetic: Taxes are not expected to increase to pay back the debt and some monetization
of the deficit is expected. Taxes decrease on impact, reacting mainly to the output gap, and
then increase above steady state due to the initial increase in debt, since the debt coefficient
of the fiscal policy rule is small but positive. Given the persistence of taxes, the tax increase
above steady state makes the present value of expected future surpluses increase on impact.

In the Mixed regime, agents compute their responses based on their expectation of the
evolution of future regimes. As a result, the effects of a monetary contraction on inflation and
output are between the two previously described regimes. Agents’ expectations incorporate
the behavior of the economy under both regimes M and F. Thus, there is lower inflation on
impact and there is a wealth effect that translates into marginally higher inflation in the long
run. Output also falls on impact due to higher real interest rates. These results mean that,
as long as the economy does not start at one of the limiting regimes and stays there forever,
some of the wealth effect derived from regime F will influence the economy’s response to a
monetary contraction. That is, a monetary contraction decreases inflation on impact, but
the long-run effect is an increase of inflation above steady state. Sims (2011) describes this
feature of monetary policy as “stepping on a rake”.

The impact response of inflation and output to a 25 basis points increase in the interest
rate is shown in Figure 7 for a combination of values of απ(zm) and γb(zf ) for zm = zf in [-
10,10]. The responses of inflation and output range from -1.03% and -1.37%, respectively, in
regime M (zm = zf = 10), to -0.15% and -0.42%, respectively, in regime F (zm = zf = −10).
In between these limits there exists a continuum of impact responses given by the possible
combinations of the monetary and fiscal policy rule coefficients. Hence, the size of the impact
response of inflation and output to a monetary policy shock will depend on the state of the

10To determine the direction of the initial response of inflation in regime F, we use the following expression:

R−1b−1
1

Π0

1

∆Y0
= E0

∞∑
t=0

MRS0,t (st +mt) ,

where st and mt denote the primary surplus and seignorage, respectively, in output terms.
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Figure 7: Response on Impact to a 25 bp Increase in the Interest Rate
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monetary and fiscal policy rule coefficients at the time of policy implementation.

6.1.2 A Fiscal Contraction - Tax increase

Figure 6 shows the responses of some of the variables of the model to a one-time 100
basis point i.i.d shock on the tax-to-output ratio.

In regime M, a tax increase that retires debt does not have any effect on output or
inflation due to the Ricardian nature of the equilibrium: higher taxes today are expected to
be fully compensated with lower taxes in the future, with no wealth effect on households.
Wealth is unchanged because, on impact, the present value of expected future surpluses and
seignorage are unchanged. Taxes decrease after impact in reaction to the reduction in debt
and, given the persistence of taxes, remain below steady state at long horizons. Debt falls,
anticipating the decrease in the present value of expected future surpluses. There are no
changes in seignorage.

A tax increase in regime F reduces wealth since the increase is not expected to be reversed
in the future. The decrease in wealth reduces demand for goods and, hence, inflation. Since
the nominal interest rate responds passively to changes in inflation, the real interest rate
increases, reducing consumption and output. The present value of expected future surpluses
increases due to persistently higher taxes that will not be compensated for in the future.
The present value of expected future seignorage declines on impact due to lower inflation and
interest rates. Overall, the change in the expected present value of government net receipts
implies that debt initially increases before returning to steady state.

In the Mixed regime, as with the monetary contraction, agents’ behavior is based on their
expectation of the evolution of future regimes. As a result, the effects of a fiscal contraction
are between the two previously described regimes. That is, a change in taxes has effects on
inflation and output due to the wealth effect that emerges because agents do not expect the
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Figure 8: Response on Impact to a 100 bp Increase in the Tax Rate
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initial increase in taxes to be completely reversed in the future. However, the effects are
attenuated with respect to a pure F regime.

The impact response of inflation and output to a 100 basis point increase in the tax-to-
output ratio is shown in Figure 8 for a combination of values of απ(zm) and γb(zf ) for zm = zf

in [-10,10]. The responses of inflation and output range from 0% and 0%, respectively, in
regime M (zm = zf = 10), to -0.71% and -0.78%, respectively, in regime F (zm = zf = −10).
In between these limits there exists a continuum of impact responses dependent on the
combinations of monetary and fiscal policy rule coefficients. Hence, the magnitude of the
impact responses of inflation and output to a fiscal policy shock will depend on the state of
the monetary and fiscal policy rule coefficients at the time of policy implementation.

6.2 Policy Interdependence: Its Effects

In this section we analyze the effect of interdependence in monetary and fiscal policy
making as measured by a positive correlation coefficient between the latent factors, κ. In
Section 5.2, we showed that the estimated posterior mean of the correlation coefficient be-
tween the latent factors is 0.2. As mentioned previously, this value implies that monetary
tightenings to stabilize inflation tend to be accompanied by fiscal policy that stabilizes debt
(regime M) while fiscal policy that deviates from debt stabilization tends to be accompanied
by a loose monetary policy that contributes to keep debt stable (regime F).

The existing literature on Markov-switching policy rule coefficients assumes that inde-
pendent states drive the switches between regimes of the coefficients of each policy rule. In
that sense, there are not explicit interactions between monetary and fiscal policymaking. In
the context of the current paper, that would be analogous to the case where κ = 0.

To examine the effect of policy interdependence (κ > 0), we solve and simulate the model
for different values of the correlation coefficient between the latent factors. We simulate the
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Figure 9: Interdependence and Unconditional Volatilities of Output and In-
flation
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model for 1,000 periods 1,000 times, including the evolution of latent factors, and take the
standard deviation of output and inflation.11 Figure 9 illustrates the results of the exercise
where the unconditional standard deviations have been normalized to one when κ = 0, which
is the case of absence of coordination.

As can be seen from the figure, the stronger the association between monetary and fiscal
policymaking, as measured by the degree of synchronization of changes in the coefficients of
the policy rules, the smaller the unconditional standard deviation of the series. The results
show that going from a scenario of independent switching in the coefficients of the policy
rules to a scenario of relatively low interdependence, as measured by κ = 0.25, would result
in a decrease of between 1% and 2% in the unconditional standard deviation of inflation or
output.

To understand this result, recall that the only two determinate equilibria arise in regimes
M and F, while the other two equilibria imply either an indeterminacy or a solution with
unbounded debt. Under the indeterminate equilibrium, the presence of sunspot shocks may
imply a higher volatility of inflation, whereas under the unbounded debt equilibrium there is
not a stationary solution to the macroeconomic model. Hence, policy co-movements in the
direction of the M and F regimes would help stabilize output and inflation with respect to
the case of no policy co-movements or co-movements away from determinate regimes.

7 Concluding Remarks

In this paper, we formulated and solved a New Keynesian model with time-varying policy
rule coefficients that allows for interdependence between monetary and fiscal policymaking.
This specification permits analyzing the effects of monetary and fiscal policy in an environ-
ment where agents expect the economy to evolve between times where the nominal anchor
is provided by monetary policymaking and times where the nominal anchor is provided by

11The standard deviation of the shocks is kept fixed across simulations.
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fiscal policymaking.
We estimated the policy rules, and obtained results showing that there have been fluctu-

ations in the monetary and fiscal policy rule coefficients. Additionally, policymaking shows
important persistence, with fiscal policy being somewhat more persistent than monetary
policy. The results also show that there is a degree of policy interdependence, given by a
positive correlation coefficient between the latent factors that drive the evolution of policy
rule coefficients. More specifically, fiscal policy that focuses on keeping debt under control
tends to accompany monetary policy that focuses on keeping inflation under control, and
monetary policy that keeps interest rates with a low reaction to inflation tends to accompany
fiscal policy that departs from debt stabilization.

Policy experiments show that when agents expect the economy to evolve between a regime
of monetary price determination and a regime of fiscal price determination, contractionary
monetary policy lowers inflation in the short run and increases it in the long run. The exper-
iments reveal that (lump-sum) taxes have effects on output and inflation, as the literature
on the fiscal theory of the price level suggests, but effects are attenuated relative to a pure
fiscal regime.
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Appendix

A Model Setup

The representative household solves the following problem:

max
{Ct,Mt/Pt,Bt}∞t=0

E0

∞∑
t=0

βt

(
(Ct/At)

1−σ

1− σ
+ χM log

(
Md

t /Pt

)
− χH

H1+φ
t

1 + φ

)
subject to

Ct +
Md

t

Pt

+
Bt

Pt

+
Tt
Pt

≤ Ht
Wt

Pt

+
Dt

Pt

+
Md

t−1

Pt

+Rt−1
Bt−1

Pt

for t ≥ 0,

M−1 +R−1B−1

P−1

given,

lim
t→∞

MRS0,t
Mt +Bt

Pt

= 0,

where MRS0,t denotes the marginal rate of substitution between period 0 and period t. The
necessary first order conditions are:

Ct :
1

At

(
Ct

At

)−σ

− λt = 0 (45)

Ht : −χHH
φ
t + λt

Wt

Pt

= 0 (46)

Md
t

Pt

: χM

(
Md

t

Pt

)−1

− λt + βEtλt+1
Pt

Pt+1

= 0 (47)

Bt : −λt
Pt

+ βRtEt
λt+1

Pt+1

= 0, (48)

λt : Ct +
Md

t

Pt

+
Bt

Pt

+
Tt
Pt

−Ht
Wt

Pt

− Dt

Pt

−
Md

t−1

Pt

−Rt−1
Bt−1

Pt

= 0 (49)

where λt is the Lagrange multiplier associated to the budget constraint at time t.
From (45) and (48),

1 = βRtEt

(
Ct/At

Ct+1/At+1

)σ
At

At+1

Pt

Pt+1

. (50)

From (45) and (46)

χHH
φ
t At

(
Ct

At

)σ

=
Wt

Pt

. (51)
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From (45), (47) and (48),

Mt

Pt

= χMAt

(
Ct

At

)σ (
Rt

Rt − 1

)
. (52)

Profits of intermediate firm j are given by

Dt(j)

Pt

=
Pt(j)

Pt

Yt(j)−
Wt

Pt

Lt(j)−
ϕ

2

(
Pt(j)

ΠPt−1(j)
− 1

)2

Yt. (53)

Substituting (8) and (9) in (53) yields

Dt(j)

Pt

=

[(
Pt(j)

Pt

)1−θt

− ψt

(
Pt(j)

Pt

)−θt

− ϕ

2

(
Pt(j)

ΠPt−1(j)
− 1

)2
]
Yt.

Then, intermediate firm j chooses Pt(j) to maximize

Et

∞∑
k=0

MRSt,t+k

[(
Pt(j)

Pt

)1−θt

− ψt

(
Pt(j)

Pt

)−θt

− ϕ

2

(
Pt(j)

ΠPt−1(j)
− 1

)2
]
Yt.

The first order condition to this maximization problem is

0 = λtYt

[
(1− θt)

(
Pt(j)

Pt

)−θt 1

Pt

+ θt
ψt

Pt

(
Pt(j)

Pt

)−θt−1

− ϕ

(
Pt(j)

ΠPt−1

− 1

)
1

ΠPt−1(j)

]
+

+βλt+1Yt+1ϕ

(
Pt+1(j)

ΠPt

− 1

)
Pt+1(j)

ΠPt(j)2
. (54)

In a symmetric equilibrium, Pt(j) = Pt, Lt(j) = Lt and Yt(j) = Yt, hence

Dt(j)

Pt

=
Dt

Pt

=

[
1− ψt −

ϕ

2

(
Pt

ΠPt−1

− 1

)2
]
Yt. (55)

In equilibrium, Md
t = M s

t = Mt, Bt = 0 and Ht = Lt. Then, (11), (55) and (49) imply
(12). In the symmetric equilibrium, substituting (45) into (54) yields (13). Finally, the
symmetric equilibrium yields (15), (52) is (16), and (50) is (14).

Before proceeding to the log-linearization of the model, it is convenient to write (11) in
terms of nominal output. The resulting expression is

bt = 1− 1

gt
− τt −

1

vt
+

1

vt−1

1

Πt

1

∆Yt
+Rt−1bt−1

1

Πt

1

∆Yt
, (56)

where ∆Yt = Yt/Yt−1.
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To obtain (17), start with (15) and recall the definition of ψT = Wt/PtAt to get

ψt = χHL
φ
t At

(
Ct

At

)σ

.

In the symmetric equilibrium, from (9), Yt = AtLt, and without price rigidities, ψt =
θt−1
θt

and Ct = Yt/gt, hence
θt − 1

θt
= χH

(
Y ∗
t

At

)φ+σ

g−σ
t .

Once the variables have been de-trended by dividing them by At, the absence of shocks
yields (18) from (14), (21) from (16), (19) from combining (12) and (17), (20) from (19) and
ct = yt/gt, and (22) from (56) with ∆y = δ.

B Matrices for Solving the Model

The matrices in system (33)-(35) are given by

G =

[
0 0 −1/σ 0 0 0 0
0 0 0 0 0 0 −(θ − 1)(φ+ σ)/ϕ

]
, J =

[
1 1/σ
0 β

]
,

K =

[
−1 0

(θ − 1)(φ+ σ)/ϕ −1

]
, M =

[
1− ρg 0 ρν/σ 0 0

0 0 0 0 0

]
,

A(zt) =



−1 0 1/(R− 1) 0 0 0 0
1/vb −1 0 −τ/b −(1/bvΠδ + 1/β) 0 0
0 0 −1 0 0 0 −(1− ρR)α

y(zmt )

0 0 0 −1 0 0 −(1− ρτ )γ
y(zft )

0 0 0 0 −1 −1 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1


,

B(zft ) =



0 0 0 0 0 0 0
−1/vΠδb 1/β 1/β 0 0 0 0

0 0 ρR 0 0 0 0

0 (1− ρτ )γ
b(zft ) 0 ρτ 0 0 0

0 0 0 0 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 0


,

C(zt) =



1− σ 0
0 −(1/bvΠδ + 1/β)

(1− ρR)α
y(zmt ) (1− ρR)α

π(zmt )

(1− ρτ )γ
y(zft ) 0

1 0
0 0
0 0


,
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D =



σ 0 0 0 0
1/bg 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
0 0 0 0 0

σ/(φ+ σ) + 1/(φ+ σ) 0 0 0 0


,

N =


ρg 0 0 0 0
0 ρθ 0 0 0
0 0 ρν 0 0
0 0 0 0 0
0 0 0 0 0


C Obtaining the Coefficients of the Logistic Functions

Each of the elements in the matrices P(zt),Q(zt),R(zt),S(zt) have the bivariate logistic
functional form (38), which is reproduced here for convenience and is illustrated in Figure
10:

F (zt) = F0 + F1

1
1+exp (−F2m(zmt −F3m))

1

1+exp (−F2f(zft −F3f))

1− F4
exp (−F2m(zmt −F3m))

1+exp (−F2m(zmt −F3m))

exp (−F2f(zft −F3f))
1+exp (−F2f(zft −F3f))

.

Figure 10: Bivariate Logistic Function
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To avoid computational costs, we find the solutions to the coefficients in R(zt) and S(zt)
only, solving for inflation and output, leaving the full solution of the model to be accounted
for the structural equations of the state variables (25)-(32). Given the structure of the vector
of shocks, S(zt) is a matrix with 10 distinct elements. Given the structure of the vector of
state variables, R(zt) is a matrix with 10 distinct elements as well, although it has 14 entries.
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Therefore, in total there are 20× 6 = 120 coefficients of the logistic functions to be found to
obtain a solution.

C.1 Finding F0 and F1

Notice that the time-varying policy rule coefficients have the following limiting combina-
tions (bounds):

zmt → +∞ zmt → −∞

zft → +∞ απ(zmt ) = απ
0 + απ

1 αy(zmt ) = αy
0 + αy

1

γb(zft ) = γb0 + γb1 γy(zft ) = γy0 + γy1

zft → −∞ απ(zmt ) = απ
0 αy(zmt ) = αy

0

γb(zft ) = γb0 γy(zft ) = γy0

Also, notice that F (zt) has the following limiting expressions:

zmt → +∞ zmt → −∞
zft → +∞ F (zt) = F0 + F1

zft → −∞ F (zt) = F0

To obtain F0 and F1, we solve the constant-coefficient versions of the model two times
using Uhlig (1998), at the two different limiting combinations of the latent factors zmt and
zft . We solve for the two bounds making sure that the solutions deliver determinacy of the
equilibria at the bounds.

C.2 Finding F2m, F2f , F3m, F3f

Substitute (36)-(37) in (33)-(35) to obtain[
A(zt)P(zt) +C(zt)R(zt) +B(zft )

]
kt−1 + [A(zt)Q(zt) +C(zt)S(zt) +D]ut = 0,{[

JR̄(zt) +G
]
P(zt) +KR(zt)

}
kt−1 +

{[
JR̄(zt) +G

]
Q(zt) + JS̄(zt)N+KS(zt) +M

}
ut = 0,

where R̄(zt) ≡ EtR(zt+1) and S̄(zt) ≡ EtS(zt+1). By the undetermined coefficients method,
we have

A(zt)P(zt) +C(zt)R(zt) +B(zft ) = 0

A(zt)Q(zt) +C(zt)S(zt) +D = 0[
JR̄(zt) +G

]
P(zt) +KR(zt) = 0[

JR̄(zt) +G
]
Q(zt) + JS̄(zt)N+KS(zt) +M = 0.

Then, solving for R(zt) and S(zt), we have

[K+ [G+ JR̄(zt)][−A(zt)]
−1C(zt)]R(zt) = −[G+ JR̄(zt)][−A(zt)]

−1B(zft )

[K+ [G+ JR̄(zt)][−A(zt)]
−1C(zt)]S(zt) = −JS̄(zt)N−M− [G+ JR̄(zt)][−A(zt)]

−1D.

34



Let

T(zt) ≡ K+ [G+ JR̄(zt)][−A(zt)]
−1C(zt) (57)

U(zt) ≡ −[G+ JR̄(zt)][−A(zt)]
−1B(zft ) (58)

V(zt) ≡ −JS̄(zt)N−M− [G+ JR̄(zt)][−A(zt)]
−1D. (59)

Then, using the relevant elements of R(zt) and S(zt), we can write[
T(zt) 0
0 T(zt)

] [
R(zt)
S(zt)

]
=

[
U(zt)
V(zt)

]
. (60)

Given F0, F1 and F4, F (zt) takes the following expressions that include F2m, F2f , F3m

and F3f :

• lim
zft →∞

F (0, zft ) = F0 +
F1

1 + exp(F2mF3m)

• lim
zmt →∞

F (zmt , 0) = F0 +
F1

1 + exp(F2fF3f )

• ∂

∂zmt
F (zmt , 0)|zmt =0 = gm (F1, F2m, F3m, F2f , F3f , F4)

• ∂

∂zft
F (zmt , 0)|zft =0 = gf (F1, F2m, F3m, F2f , F3f , F4),

where gm(·) and gf (·) are nonlinear functions of their respective arguments.
Then, to find F2m, F2f , F3m and F3f we solve the following system of equations for the

relevant elements of R(zt) and S(zt): lim
zft →∞

T(0, zft ) 0

0 lim
zft →∞

T(0, zft )


 lim
zft →∞

R(0, zft )

lim
zft →∞

S(0, zft )

 =

 lim
zft →∞

U(0, zft )

lim
zft →∞

V(0, zft )

 ,

 lim
zmt →∞

T(zmt , 0) 0

0 lim
zmt →∞

T(zmt , 0)

 lim
zmt →∞

R(zmt , 0)

lim
zmt →∞

S(zmt , 0)

 =

 lim
zmt →∞

U(zmt , 0)

lim
zmt →∞

V(zmt , 0)

 ,


∂

∂zmt
T(zmt , 0)|zmt =0 0

0
∂

∂zmt
T(zmt , 0)|zmt =0

[R(0, 0)
S(0, 0)

]
+

+

[
T(0, 0) 0

0 T(0, 0)

]
∂

∂zmt
R(zmt , 0)|zmt =0

∂

∂zmt
S(zmt , 0)|zmt =0

 =
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=


∂

∂zmt
U(zmt , 0)|zmt =0

∂

∂zmt
V(zmt , 0)|zmt =0

 ,


∂

∂zft
T(0, zft )

∣∣∣
zft =0

0

0
∂

∂zft
T(0, zft )

∣∣∣
zft =0

[R(0, 0)
S(0, 0)

]
+

+

[
T(0, 0) 0

0 T(0, 0)

]
∂

∂zft
R(0, zft )

∣∣∣
zft =0

∂

∂zft
S(0, zft )

∣∣∣
zft =0

 =

=


∂

∂zft
U(0, zft )

∣∣∣
zft =0

∂

∂zft
V(0, zft )

∣∣∣
zft =0

,

 ,

where

lim
zf
t →+∞

A(0, zft ) =



−1 0 1/(R− 1) 0 0 0 0
1/vb −1 0 −τ/b −(1/vΠδ + 1/β) 0 0

0 0 −1 0 0 0 −(1− ρR)
(
αy
0 +

αy
1

1+exp(αy
2α

y
3)

)
0 0 0 −1 0 0 −(1− ρτ )(γ

y
0 + γy

1 )
0 0 0 0 −1 −1 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1



lim
zm
t →+∞

A(zmt , 0) =



−1 0 1/(R− 1) 0 0 0 0
1/vb −1 0 −τ/b −(1/vΠδ + 1/β) 0 0
0 0 −1 0 0 0 −(1− ρR)(α

y
0 + αy

1)

0 0 0 −1 0 0 −(1− ρτ )
(
γy
0 +

γy
1

1+exp(γy
2 γ

y
3 )

)
0 0 0 0 −1 −1 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1



lim
zf
t →+∞

C(0, zft ) =



1− σ 0
0 −(1/vΠδ + 1/β)

(1− ρR)
(
αy
0 +

αy
1

1+exp(αy
2α

y
3)

)
(1− ρR)

(
απ
0 +

απ
1

1+exp(απ
2α

π
3 )

)
(1− ρτ )(γ

y
0 + γy

1 ) 0
1 0
0 0
0 0


,

lim
zf
t →+∞

C(zmt , 0) =



1− σ 0
0 −(1/vΠδ + 1/β)

(1− ρR) (α
y
0 + αy

1) (1− ρR) (α
π
0 + απ

1 )

(1− ρτ )
(
γy
0 +

γy
1

1+exp(γy
2 γ

y
3 )

)
0

1 0
0 0
0 0


,
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B(0) =



0 0 0 0 0 0 0
−1/vΠδ 1/β 1/β 0 0 0 0

0 0 ρR 0 0 0 0

0 (1− ρτ )
(
γb
0 +

γb
1

1+exp(γb
2γ

b
3)

)
0 ρτ 0 0 0

0 0 0 0 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 0


,

lim
zf
t →+∞

B(zft ) =



0 0 0 0 0 0 0
−1/vΠδ 1/β 1/β 0 0 0 0

0 0 ρR 0 0 0 0
0 (1− ρτ )

(
γb
0 + γb

1

)
0 ρτ 0 0 0

0 0 0 0 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 0


.

∂

∂zmt
A(zmt , 0)|zm

t =0 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 −(1− ρR)
αy

1α
y
2 exp(αy

2α
y
3)

(1+exp(αy
2α

y
3))

2

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



∂

∂zmt
C(zmt , 0)|zm

t =0 =



0 0
0 0

(1− ρR)
αy

1α
y
2 exp(αy

2α
y
3)

(1+exp(αy
2α

y
3))

2 (1− ρR)
απ

1α
π
2 exp(απ

2α
π
3 )

(1+exp(απ
2α

π
3 ))

2

0 0
0 0
0 0
0 0



∂

∂zft
B(zft )

∣∣∣
zf
t =0

=



0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0

0 (1− ρτ )
γ1γ2 exp(γ2γ3)
(1+exp(γ2γ3))2

0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

C.3 Finding F4

Given F0, F1, F2m, F2f , F3m and F3f , we have the following expression that includes F4:

F (0) = F0 + F1

1
1+exp(F2mF3m)

1

1+exp(F2fF3f)

1− F4 exp(F2mF3m)
1+exp(F2mF3m)

exp(F2fF3f)
1+exp(F2fF3f)

Then, to find F4 we solve the following system of equations:[
T(0) 0
0 T(0)

] [
R(0)
S(0)

]
=

[
U(0)
V(0)

]
.
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D Computation of R̄(zt) and S̄(zt)

To obtain EtR(zt+1) and EtS(zt+1) we perform a second order Taylor expansion to

F (zt+1) = F (zmt+1, z
f
t+1)

= F (ρzmz
m
t + ξmt+1, ρzf z

f
t + ξft+1)

around ξmt+1 = ξft+1 = 0 as follows:

F (zmt+1, z
f
t+1) ≈ F (ρzmz

m
t , ρzf z

f
t ) + Fm(ρzmz

m
t , ρzf z

f
t )ξ

m
t+1 + Ff (ρzmz

m
t , ρzf z

f
t )ξ

f
t+1+

+ 0.5Fmm(ρzmz
m
t , ρzf z

f
t )(ξ

m
t+1)

2 + 0.5Fff (ρzmz
m
t , ρzf z

f
t )(ξ

f
t+1)

2+

+ Fmf (ρzmz
m
t , ρzf z

f
t )ξ

m
t+1ξ

f
t+1,

where Fi(·) and Fij(·) denote the partial derivative of F (·) with respect to ξi and the par-
tial derivative of F (·) with respect to ξi first and then with respect to ξj, for j = m, f ,
respectively.

Then, taking expectation conditional to zmt and zft , we get

E
(
F (zmt+1, z

f
t+1)|zmt , z

f
t

)
≈ F (ρzmz

m
t , ρzf z

f
t )+

+ 0.5Fmm(ρzmz
m
t , ρzf z

f
t ) + 0.5Fff (ρzmz

m
t , ρzf z

f
t )+

+ Fmf (ρzmz
m
t , ρzf z

f
t )κ.

Notice that the expectation of the coefficient matrices involves κ, the correlation coeffi-
cient between the latent factors that drive the evolution of the monetary and fiscal policy
rule coefficients. When taking expectations, the agents of the model incorporate the degree
of interdependence in policymaking.

E Verifying the Guessed Functional Form

Having obtained the coefficients of the logistic functions that characterize the solution,
it is necessary to verify that the guessed functional forms for R(zt) and S(zt) are indeed
logistic. Recall the system of equations in (60):[

T(zt) 0
0 T(zt)

] [
R(zt)
S(zt)

]
=

[
U(zt)
V(zt)

]
.

Notice that if both zmt and zft were white noise processes, then both R̄(zt) and S̄(zt)
would be constant matrices. In that case, if the coefficients on the output gap of both policy
rules were constant, T(·) in (57) would be a function of zmt only through C(zmt ), U(·) in (58)
would be a function of zft only through B(zft ), and V(·) would be constant. This implies
that some of the elements of R(·) are bivariate logistic functions, and that all the elements
of S(·) are univariate logistic functions that depend on zmt . In particular, only the entries
in the second column of R(·), those that relate the behavior of inflation and the output
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gap with the evolution of lagged debt, depend on both zmt and zft ; all the other elements
are univariate logistic functions dependent on zmt . Hence, in the absence of persistence in
the latent factors, it is easy to show that the solution matrices follow indeed bivariate (or
univariate) logistic functions. It can be shown that the same argument holds if the policy
rule coefficients on the output gap are time varying.

In any case, however, and in particular when the latent factors are persistent, the solution
has to be such that in (60) we do not ‘divide by zero’. The issue has to do with the fact
that since the transition between states is continuous, as opposed to the Markov-switching
setup of policy rule coefficients, for some values of zt there may exist a discontinuity in the
solution. To see this, consider the simple Fisherian model:

Rt = Etπt+1 + ut

Rt = α(zt)πt

ut+1 = ρuut + εt+1, εt ∼ iid N(0, σ), |ρu| < 1

zt+1 = ρzzt + ξt+1, ξt ∼ iid N(0, 1), 0 ≤ ρz ≤ 1

zt⊥us ∀s, t

α(zt) = α0 +
α1

1 + exp (−α2zt)
,

where the notation is the same as in the new Keynesian model, since this is a particular
version of the model presented in the paper.

We guess that the fundamental solution is given by

πt = a(zt)ut,

where
a(zt) = a0 +

a1
1 + exp (−a2(zt − a3))

.

Solving for a(zt), we have
ρuEta(zt+1) + 1

α(zt)
= a(zt).

Performing a first-order Taylor expansion to a(zt+1) around ξt+1 = 0, we get

ā(zt) = a(ρzzt) = a0 +
a1

1 + exp (−a2(ρzzt − a3))

If ρz = 1, it is easy to see that

a(zt) =
1

α(zt)− ρu
.

Hence, for the solution to be logistic —and continuous, we need α(zt) > ρu ∀zt, which is
the same as α0 > ρu, given the monotonicity of α(zt).

To derive the analogous condition in the more general case of the model presented in the
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paper, rewrite (60) for S(zt) ignoring the last two terms of (59), as follows:

T(zt)S(zt) = −JS̄(zt)N,

which can be rewritten as

(I5 ⊗T(zt)) vec (S(zt)) = −
(
N⊤ ⊗ J

)
vec
(
S̄(zt)

)
.

Hence, a sufficient condition for the continuity of the solution is that each of the elements
of − (I5 ⊗T(−∞)) is greater than the corresponding element of

(
N⊤ ⊗ J

)
.

F Endogeneity Setup

Let GSPt be the demeaned government spending to output ratio in period t, M2Gt the
annual rate of growth of M2 in period t, and CMPt commodity price inflation. In order to
account for the existence of endogeneity, the observation equations (39)-(40) of the state-
space model have to be modified by introducing a system of simultaneous equations. To that
end, let

y1,t = INTt,

y2,t = TAXt,

x1,t = [INFt,GAPt],

x2,t = [DBTt−1,GAPt],

α(zmt ) = [απ(zmt ), αy(zmt )]′,

γ(zft ) = [γb(zft ), γ
y(zft )]

′,

w1,t = [{INFt−s}4s=1, {GAPt−s}4s=1, {GSPt−s}4s=1, {M2Gt−s}4s=1, {CMPt−s}4s=1],

w2,t = [DBTt−1, {INFt−s}4s=1, {GAPt−s}4s=1, {GSPt−s}4s=1, {M2Gt−s}4s=1, {CMPt−s}4s=1].

Hence, conditional on zt, the state-space model (39)-(44) can be divided into two models:
one for the interest rate equation, and another for the tax rate equation. The observation
equations of each of the models are:

y1,t = ρRy1,t−1 + (1− ρR)x1,tα(zmt ) + υRt (61)

x1,t = w1,tΠ1 + v1,t, (62)

and

y2,t = ρτy2,t−1 + (1− ρτ )x2,tγ(z
f
t ) + υτt (63)

x2,t = w2,tΠ2 + v2,t. (64)

Here, Π1 and Π2 are conformable parameter matrices, and vi,t ∼ iid N(0,Ψi) for i = 1, 2.
We introduce endogeneity in (61)-(62) and (63)-(64) by specifying

υR∗
t = v1,tδ1 + eRt ,
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υτ∗t = v2,tδ2 + eτt ,

where υjt = σj,tυ
j∗
t for j = R, τ , and

eRt |y1,t−1,v1,t ∼ iid N (0, 1− δ′
1Ψ1δ1) ,

eτt |y2,t−1,v2,t ∼ iid N (0, 1− δ′
2Ψ2δ2) .

Let yt = [y1,t, y2,t]
′ and Yt = {ys}ts=1. Appendix G shows how to obtain the conditional

likelihood function of YT .

G The Likelihood Function of the Model with Endo-

geneity, Time-Varying Coefficients and Stochastic

Volatility

Notice that the joint density function of yi,t and vi,t, conditional on yi,t−1, for i = 1, 2, and
the latent factors and stochastic volatility (these last two omitted from the density functions
below) can be written as

p (yi,t,vi,t|yi,t−1,Θyi ,Θvi
) = py (yi,t|yi,t−1,vi,t,Θyi ,Θvi

) pv(vi,t|Θvi
)

= py (yi,t|yi,t−1,xi,t,vi,t,Θyi ,Θxi
) px(xi,t|wi,t,Θxi

),

where Θvi
for i = 1, 2 is the set of parameters {δi,Πi,Ψi}. Adding the conditionality on

latent factors and stochastic volatility,

y1,t|y1,t−1,x1,t,v1,t, z
m
t , σR,t,Θy1 ,Θx1 ∼ N

(
ρRy1,t−1 + (1− ρR)x1,tα(zmt ) + σR,t

(
v1,tδ1 + eRt

)
, 1− δ′1Ψ1δ1

)
y2,t|y2,t−1,x2,t,v2,t, z

f
t , στ,t,Θy2 ,Θx2 ∼ N

(
ρτy2,t−1 + (1− ρτ )x2,tγ(z

f
t ) + στ,t (v2,tδ2 + eτt ) , 1− δ′2Ψ2δ2

)
xi,t|wi,t,Θxi ∼ N (wi,tΠi,Ψi) , for i = 1, 2.

Let Yi,t = {yi,s}ts=1, for i = 1, 2 and let Xi,t and Vi,t be defined in a similar fashion. Let
Zk,t = {zks}ts=1 for k = m, f and let Hj,t = {σj,s}ts=1 for j = R, τ . Then, the conditional
log-likelihood functions ofY1,T givenY1,T−1, X1,t, V1,t, Zm,t, HR,t, and ofY2,T givenY2,T−1,
X2,t, V2,t, Zf,t, Hτ,t are, respectively,

L1,T

(
Θy1(Θ̂x1)

)
=

T∑
t=1

l1,t

(
Θy1(Θ̂x1)

)
,

L2,T

(
Θy2(Θ̂x2)

)
=

T∑
t=1

l2,t

(
Θy2(Θ̂x2)

)
,

where

Θ̂xi
= max

Θxi

T∑
t=1

log (px(xi,t|wi,t,Θxi
))
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is the maximum likelihood estimator of Θxi
for i = 1, 2, and

l1,t

(
Θy1(Θ̂x1)

)
= log

(
py

(
y1,t|y1,t−1,x1,t,v1,t, z

m
t , σR,t,Θy1 , Θ̂x1

))
,

l2,t

(
Θy2(Θ̂x2)

)
= log

(
py

(
y2,t|y2,t−1,x2,t,v2,t, z

f
t , στ,t,Θy2 , Θ̂x2

))
.

This is the two-stage conditional maximum likelihood estimation procedure suggested by
Vuong (1984). Let Xt = ∪2

i=1Xi,t, and let Vt be defined in a similar way. Let Zt = {zs}ts=1

and Ht = {hs}ts=1. The log-likelihood function of YT given YT−1,XT ,VT ,ZT ,HT is

LT

(
Θy(Θ̂x)

)
=

T∑
t=1

lt

(
Θy(Θ̂x)

)
,

where
lt

(
Θy(Θ̂x)

)
= l1,t

(
Θy1(Θ̂x1)

)
+ l2,t

(
Θy2(Θ̂x2)

)
,

and Θ̂x = Θ̂x1 ∪ Θ̂x2 , Θy = Θy1 ∪Θy2 .

H Bayesian Estimation

The method presented here extends the estimation method implemented in Geweke and
Tanizaki (2001) by allowing endogeneity. Let py(yt|Xt,Vt,Zt,Ht,Θy) denote the conditional
density of yt given Xt, Vt, Zt, Ht and Θy. Let pz(zt|zt−1,Θz) denote the conditional density
of zt given zt−1 and Θz. Let ph(ht|ht−1,Θh) denote the conditional density of ht given ht−1

and Θh. Define Z∗
t+1 = {zs}Ts=t+1 and H∗

t+1 = {hs}Ts=t+1. Under this setup, the joint density
of ZT , HT and YT given XT , Vt, Θz, Θh and Θy is given by

p(ZT ,HT ,YT |XT ,VT ,Θz ,Θh,Θy) = pz(ZT |XT ,VT ,Θz)ph(HT |XT ,VT ,ZT ,Θh)py(YT |XT ,VT ,ZT ,HT ,Θy)

= pz(ZT |Θz)ph(HT |Θh)py(YT |XT ,VT ,ZT ,HT ,Θy),

where the last equality follows from the Markov property of {zs}ts=0 and {hs}ts=0. Then, if
z0 and h0 are assumed to be stochastic,

pz(ZT |Θz) = pz(z0|Θz)
T∏
t=1

pz(zt|zt−1,Θz),

ph(HT |Θh) = ph(h0|Θh)
T∏
t=1

ph(ht|ht−1,Θh),

py(YT |XT ,VT ,ZT ,HT ,Θy) =
T∏
t=1

py(yt|Xt,Vt,Zt,Ht,Θy),

p(zt|Zt−1,Z
∗
t+1,YT ,XT ,VT ,HT ,Θy,Θz,Θh) ∝ (65)
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{
py(yt|Xt,Vt,Zt,Ht,Θy)pz(zt|zt−1,Θz)pz(zt+1|zt,Θz), if t ≤ T − 1

py(yt|Xt,Vt,Zt,Ht,Θy)pz(zt|zt−1,Θz), if t = T,

p(ht|Ht−1,H
∗
t+1,YT ,XT ,VT ,ZT ,Θy,Θz,Θh) ∝ (66){

py(yt|Xt,Vt,Zt,Ht,Θy)ph(ht|ht−1,Θh)ph(ht+1|ht,Θh), if t ≤ T − 1

py(yt|Xt,Vt,Zt,Ht,Θy)ph(ht|ht−1,Θh), if t = T,

p(Θy|YT ,XT ,VT ,ZT ,HT ,Θz,Θh) ∝ py(YT |XT ,ZT ,HT ,Θy)pΘy(Θy), (67)

p(Θz|YT ,XT ,VT ,ZT ,Θy,Θh) ∝ pz(ZT |Θz)pΘz(Θz), (68)

p(Θh|YT ,XT ,VT ,HT ,Θy,Θz) ∝ ph(HT |Θh)pΘh
(Θh), (69)

where pΘy(Θy), pΘz(Θz) and pΘh
(Θh) are the prior densities of Θy, Θz and Θh, respectively.

From the posterior densities (67)-(69), the smoothing random draws are generated as
follows:

Step 0. Take appropriate initial values for Θy, Θz, {zt}Tt=0, Θh and {ht}Tt=0, and fix Π̂i,

Ψ̂i for i=1,2.12

Step 1. Generate a random draw of zt from p(zt|Zt−1,Z
∗
t+1,YT ,XT ,VT ,HT ,Θy,Θz,Θh)

for t = 1, 2, . . . , T . Draw z
(i)
t using the normal proposal density

z
(i)
t ∼ N(z

(i−1)
t , cKz

t )

where Kz
t is the filtered variance-covariance matrix of the random coefficients of a

random-coefficient specification of the policy rules, and c is a proper scale coefficient.
The algorithm accepts z

(i)
t with probability r:

r = min

 p
(
z
(i)
t |Z(i−1)

t−1 ,Z
∗(i−1)
t+1 ,YT ,XT ,VT ,H

(i−1)
T ,Θ

(i−1)
y ,Θ

(i−1)
z ,Θ

(i−1)
h

)
p
(
z
(i−1)
t |Z(i−1)

t−1 ,Z
∗(i−1)
t+1 ,YT ,XT ,VT ,H

(i−1)
T ,Θ

(i−1)
y ,Θ

(i−1)
z ,Θ

(i−1)
h

) , 1
 .

Step 2. Generate a random draw of Θy from p(Θy|YT ,XT ,VT ,ZT ,HT ,Θz,Θh).

(a) Partition Θy1 = Θy1.1 ∪Θy1.2 ∪Θy1.3 , where Θy1.1 = {απ
0 , α

π
1 , α

π
2 , α

π
3 , α

y
0, α

y
1, α

y
2, α

y
3},

Θy1.2 = ρR and Θy1.3 = δ1. Partition Θy2 = Θy2.1 ∪ Θy2.2 ∪ Θy2.3 , where Θy2.1 =
{γb0, γb1, γb2, γb3, γ

y
0 , γ

y
1 , γ

y
2 , γ

y
3}, Θy2.2 = ρτ and Θy2.3 = δ2.

12The initial latent factors, {zt}Tt=0, are smoothed estimates of a random coefficients model of the policy
rules with constant volatility. The initial volatility processes, {ht}Tt=0, are smoothed estimates of a stochastic
volatility model of the policy rules with constant coefficients. The initial values of the parameters of the
policy rules, Θy, are obtained from the maximization of the likelihood function given the initial processes for
the latent factors and stochastic volatilities. The initial values for Θz come from a least-squares regression
of current against lagged initial latent factors. The initial values for Θh come from a least-squares regression
of current against lagged initial log stochastic volatilities.
Π̂i and Ψ̂i for i = 1, 2 are the least squares estimates of the parameters in equations (62) and (64), respec-
tively.
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(b) Generate a random draw of Θ
(i)
y1 sequentially, as follows:

i. Generate a random draw of a transformation of Θ
(i)
y1.1 , Θ̃

(i)
y1.1 , using the normal

proposal density
Θ̃(i)

y1.1
∼ N(Θ̃(i−1)

y1.1
, cS1.1),

where S1.1 is the variance-covariance matrix of the maximum likelihood esti-
mator of Θ̃y1.1 given the initial latent factors and stochastic volatilities, and
c is a scale coefficient. The algorithm accepts Θi

y1.1
with probability r:

r = min

 p
(
Θ

(i)
y1.1 ∪Θ

(i−1)
y1.2 ∪Θ

(i−1)
y1.3 |Y1,T ,X1,T ,V1,T ,Z

(i)
T ,H

(i−1)
T ,Θ

(i−1)
z ,Θ

(i−1)
h

)
p
(
Θ

(i−1)
y1.1 ∪Θ

(i−1)
y1.2 ∪Θ

(i−1)
y1.3 |Y1,T ,X1,T ,V1,T ,Z

(i)
T ,H

(i−1)
T ,Θ

(i−1)
z ,Θ

(i−1)
h

) , 1

 .

ii. Generate a random draw of a transformation of Θ
(i)
y1.2 , Θ̃

(i)
y1.2 , using the normal

proposal density
Θ̃(i)

y1.2
∼ N(Θ̃(i)

y1.2
, cS1.2)

where S1.2 is the variance-covariance matrix of the maximum likelihood esti-
mator of Θ̃y1.2 given the initial latent factors and stochastic volatilities, and

c is a scale coefficient. The algorithm accepts Θ
(i)
y1.2 with probability r:

r = min

 p
(
Θ

(i)
y1.1 ∪Θ

(i)
y1.2 ∪Θ

(i−1)
y1.3 |Y1,T ,X1,T ,V1,T ,Z

(i)
T ,H

(i−1)
T ,Θ

(i−1)
z ,Θ

(i−1)
h

)
p
(
Θ

(i)
y1.1 ∪Θ

(i−1)
y1.2 ∪Θ

(i−1)
y1.3 |Y1,T ,X1,T ,V1,T ,Z

(i)
T ,H

(i−1)
T ,Θ

(i−1)
z ,Θ

(i−1)
h

) , 1

 .

iii. Generate a random draw of Θ
(i)
y1.3 using the normal proposal density

Θ(i)
y1.3

∼ N(Θ̂y1.3 , S1.3)

where Θ̂y1.3 is the least squares estimator of Θy1.3 using the residuals of least
squares estimations of (61) and (62), and S1.3 is its least squares estimated

variance-convariance matrix. The algorithm accepts Θ
(i)
y1.3 with probability r:

r = min

 p
(
Θ

(i)
y1.1 ∪Θ

(i)
y1.2 ∪Θ

(i)
y1.3 |Y1,T ,X1,T ,V1,T ,Z

(i)
T ,H

(i−1)
T ,Θ

(i−1)
z ,Θ

(i−1)
h

)
p
(
Θ

(i)
y1.1 ∪Θ

(i)
y1.2 ∪Θ

(i−1)
y1.3 |Y1,T ,X1,T ,V1,T ,Z

(i)
T ,H

(i−1)
T ,Θ

(i−1)
z ,Θ

(i−1)
h

) g(Θ
(i−1)
y1.3 )

g(Θ
(i)
y1.3 )

, 1

 ,

where g(·) is the proposal density.

(c) Generate a random draw of Θ
(i)
y2 sequentially, as follows:

i. Generate a random draw of a transformation of Θ
(i)
y2.1 , Θ̃

(i)
y2.1 , using the normal

proposal density
Θ̃(i)

y2.1
∼ N(Θ̃(i−1)

y2.1
, cS2.1),

where S2.1 is the variance-covariance matrix of the maximum likelihood esti-
mator of Θ̃y2.1 given the initial latent factors and stochastic volatilities, and

c is a scale coefficient. The algorithm accepts Θ
(i)
y2.1 with probability r:

r = min

 p
(
Θ

(i)
y2.1 ∪Θ

(i−1)
y2.2 ∪Θ

(i−1)
y2.3 |Y2,T ,X2,T ,V2,T ,Z

(i)
T ,H

(i−1)
T ,Θ

(i−1)
z ,Θ

(i−1)
h

)
p
(
Θ

(i−1)
y2.1 ∪Θ

(i−1)
y2.2 ∪Θ

(i−1)
y2.3 |Y2,T ,X2,T ,V2,T ,Z

(i)
T ,H

(i−1)
T ,Θ

(i−1)
z ,Θ

(i−1)
h

) , 1

 .
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ii. Generate a random draw of a transformation of Θ
(i)
y2.2 , Θ̃

(i)
y2.2 , using the normal

proposal density
Θ̃(i)

y2.2
∼ N(Θ̃(i)

y2.2
, cS2.2)

where S2.2 is the variance-covariance matrix of the maximum likelihood esti-
mator of Θ̃y2.2 given the initial latent factors and stochastic volatilities, and

c is a scale coefficient. The algorithm accepts Θ
(i)
y2.2 with probability r:

r = min

 p
(
Θ

(i)
y2.1 ∪Θ

(i)
y2.2 ∪Θ

(i−1)
y2.3 |Y2,T ,X2,T ,V2,T ,Z

(i)
T ,H

(i−1)
T ,Θ

(i−1)
z ,Θ

(i−1)
h

)
p
(
Θ

(i)
y2.1 ∪Θ

(i−1)
y2.2 ∪Θ

(i−1)
y2.3 |Y2,T ,X2,T ,V2,T ,Z

(i)
T ,H

(i−1)
T ,Θ

(i−1)
z ,Θ

(i−1)
h

) , 1

 .

iii. Generate a random draw of Θ
(i)
y2.3 using the normal proposal density

Θ(i)
y2.3

∼ N(Θ̂y2.3 , S2.3)

where Θ̂y2.3 is the least squares estimator of Θy2.3 using the residuals of least
squares estimations of (63) and (64), and S2.3 is its least squares estimated

variance-convariance matrix. The algorithm accepts Θ
(i)
y2.3 with probability r:

r = min

 p
(
Θ

(i)
y2.1 ∪Θ

(i)
y2.2 ∪Θ

(i)
y2.3 |Y2,T ,X2,T ,V2,T ,Z

(i)
T ,H

(i−1)
T ,Θ

(i−1)
z ,Θ

(i−1)
h

)
p
(
Θ

(i)
y2.1 ∪Θ

(i)
y2.2 ∪Θ

(i−1)
y2.3 |Y2,T ,X2,T ,V2,T ,Z

(i)
T ,H

(i−1)
T ,Θ

(i−1)
z ,Θ

(i−1)
h

) g(Θ
(i−1)
y2.3 )

g(Θ
(i)
y2.3 )

, 1

 ,

where g(·) is the proposal density.

Step 3. Generate a random draw of ht from p(ht|Ht−1,H
∗
t+1,YT ,XT ,VT ,ZT ,Θy,Θz,Θh)

for t = 1, 2, . . . , T . Draw h
(i)
t using the normal proposal density

h
(i)
t ∼ N(h

(i−1)
t , cKh

t )

where Kh
t is the filtered variance-covariance matrix of the volatility of a constant-

coefficient specification of the policy rules, and c is a proper scale coefficient. The
algorithm accepts h

(i)
t with probability r:

r = min

 p
(
h
(i)
t |H(i−1)

t−1 ,H
∗(i−1)
t+1 ,YT ,XT ,VT ,Z

(i)
T ,Θ

(i)
y ,Θ

(i−1)
z ,Θ

(i−1)
h

)
p
(
h
(i−1)
t |H(i−1)

t−1 ,H
∗(i−1)
t+1 ,YT ,XT ,VT ,Z

(i)
T ,Θ

(i)
y ,Θ

(i−1)
z ,Θ

(i−1)
h

) , 1
 .

Step 4. Generate a random draw of Θz from p(Θz|YT ,XT ,VT ,ZT ,Θy,Θh) sequentially,
as follows:

(a) Partition Θz = Θz1 ∪Θz2 where Θz1 = {ρzm , ρzf} and Θz2 = {κ}.
(b) Generate a random draw {ρ(i)zm , ρ

(i)

zf
} using two independent Beta proposal densities

(expressed in terms of means and standard deviations)

ρ
(i)
zm ∼ Beta(ρ̂zm , σ̂ρ̂zm )

ρ
(i)

zf
∼ Beta(ρ̂zm , σ̂ρ̂

zf
),
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where ρ̂zm is the ordinary least squares estimate of ρzm in (41) using {zm(i)
t }Tt=1,

and σ̂ρ̂zm is its standard error. The same applies for ρ̂zf and σ̂ρ̂
zf
, which come

from the estimation of (42) using {zf(i)t }Tt=1. The algorithm accepts {ρ(i)zm , ρ
(i)

zf
}

with probability r:

r = min

 p
(
Θ

(i)
z1 ∪Θ

(i−1)
z2 |YT ,XT ,VT ,Z

(i)
T ,Θy,Θh

)
p
(
Θ

(i−1)
z1 ∪Θ

(i−1)
z2 |YT ,XT ,VT ,Z

(i)
T ,Θy,Θh

) g(ρ(i−1)
zm , ρ

(i−1)

zf
)

g(ρ
(i)
zm , ρ

(i)

zf
)

, 1

 .

(c) Generate a random draw κ(i) using a four-parameter Beta proposal density with
range on [-1,1] (expressed in terms of mean and standard deviation)

κ(i) ∼ TransformedBeta(κ̂, (1− κ̂2)/
√
n− 1),

where κ̂ is the correlation coefficient between the residuals of equations (41) and

(42) using ρ
(i)
zm and ρ

(i)

zf
as estimated coefficients where corresponds. The algorithm

accepts κ(i) with probability r:

r = min

 p
(
Θ

(i)
z1 ∪Θ

(i)
z2 |YT ,XT ,VT ,Z

(i)
T ,Θy,Θh

)
p
(
Θ

(i)
z1 ∪Θ

(i−1)
z2 |YT ,XT ,VT ,Z

(i)
T ,Θy,Θh

) g(κ(i−1))

g(κ(i))
, 1

 .

Step 5. Generate a random draw of Θh from p(Θh|YT ,XT ,VT ,HT ,Θy,Θz).

(a) Partition Θh = Θh1∪Θh2 where Θh1 = {lnσR, ρσR
, lnστ , ρστ} and Θh2 = {ηR, ητ}.

(b) Generate a random draw {lnσ(i)
R , ρ

(i)
σR , lnσ

(i)
τ , ρ

(i)
στ} using the independent proposal

densities (expressed in terms of means and standard deviations)

ρ(i)σR
∼ Beta(ρ̂σR

, σ̂ρ̂σR )

ρ(i)στ
∼ Beta(ρ̂στ , σ̂ρ̂στ )

c
(i)
R ∼ N (ĉR, σ̂cR)

c(i)τ ∼ N (ĉτ , σ̂cτ ) ,

with ln σ
(i)
R = c

(i)
R /(1 − ρ

(i)
σR) and ln σ

(i)
τ = c

(i)
τ /(1 − ρ

(i)
στ ), where ĉR, ρ̂σR

are the
least squares estimates of (1 − ρσR

) ln σR and ρσR
in (43), respectively, using

{lnσ(i)
R,t}Tt=0, and where ĉτ , ρ̂στ are obtained similarly from (44) using {lnσ(i)

τ,t}Tt=0.

The algorithm accepts {lnσ(i)
R , ρ

(i)
σR , lnσ

(i)
τ , ρ

(i)
στ} with probability r:

r = min

 p
(
Θ

(i)
h1 ∪Θ

(i−1)
h2 |YT ,XT ,VT ,H

(i)
T ,Θy,Θz

)
p
(
Θ

(i−1)
h1 ∪Θ

(i−1)
h2 |YT ,XT ,VT ,H

(i)
T ,Θy,Θz

) g(lnσ
(i−1)
R , ρ

(i−1)
σR , lnσ

(i−1)
τ , ρ

(i−1)
στ )

g(lnσ
(i)
R , ρ

(i)
σR , lnσ

(i)
τ , ρ

(i)
στ )

, 1

 .
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(c) Generate a random draw {η(i)R , η
(i)
τ } using the inverted gamma proposal densities

η
(i)
R ∼ IG(ξ̃′

R(i)
ξ̃R(i), df)

η(i)τ ∼ IG(ξ̃′
τ(i)
ξ̃τ(i), df),

where ξ̃
R(i)
t = ln σ

(i)
R,t − (1 − ρ

(i)
σR) ln σ

(i)
R − ρ

(i)
σR lnσ

(i)
R,t−1 and ξ̃

τ(i)
t = ln σ

(i)
τ,t − (1 −

ρ
(i)
στ ) ln σ

(i)
τ − ρ

(i)
στ lnσ

(i)
τ,t−1 are residuals, and ξ̃R(i) and ξ̃τ(i) are vectors that stack

the respective residuals. The algorithm accepts {η(i)R , η
(i)
τ } with probability r:

r = min

 p
(
Θ

(i)
h1 ∪Θ

(i)
h2|YT ,XT ,VT ,H

(i)
T ,Θy,Θz

)
p
(
Θ

(i)
h1 ∪Θ

(i−1)
h2 |YT ,XT ,VT ,H

(i)
T ,Θy,Θz

) g(η(i−1)
R , η

(i−1)
τ )

g(η
(i)
R , η

(i)
τ )

, 1

 .

Step 6. Repeat steps 1-4 N times to obtain N random draws of ZT , HT , Θy, Θz and
Θh.

In steps (ii)-(vi) the random draws of Z, H, Θy, Θz and Θh are updated. This sampling
method is referred to as the Gibbs sampler. To generate the random draws of zt, ht for
t = 1, 2, . . . , T , Θy, Θz and Θh, we use the Metropolis-Hastings (M-H) algorithm. That is,
the Gibbs sampler and the M-H algorithm are combined to obtain the smoothing random
draws from the state-space model.
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